You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Localization for underwater robots remains a challenging issue. Typical sensors, such as Global Navigation Satellite System (GNSS) receivers, cannot be used under the surface and other inertial systems suffer from a strong integration drift. On top of that, the seabed is generally uniform and unstructured, making it difficult to apply Simultaneous Localization and Mapping (SLAM) methods to perform localization. Reliable Robot Localization presents an innovative new method which can be characterized as a raw-data SLAM approach. It differs from extant methods by considering time as a standard variable to be estimated, thus raising new opportunities for state estimation, so far underexploited. ...
An autonomous sailboat robot is a boat that only uses the wind on its sail as propelling force, without remote control or human assistance to achieve its mission. This involves autonomy in energy (using batteries, solar panels, turbines...), sensor data processing (compass, GPS, wind sensor...), actuators control (rudder and sail angle control...) and decision making (embedded computer with adequate algorithms). Although robotic sailing is a relatively new field of research, several applications exist for this type of robots: oceanographic and hydrographic research, maritime environment monitoring, meteorology, harbor safety, assistance and rescue in dangerous areas... Over the last decade, several events such as the Microtransat challenge, the WRSC/IRSC and SailBot have been set up to stimulate research and development around robotic sailing. These proceedings cover the current and future academic and technology challenges raised by the development of autonomous sailboat robots presented at the WRSC/IRSC (World Robotic Sailing Championship/International Robotic Sailing Conference) 2013, in Brest, France, 2-6 September 2013.
This book reports on findings at the intersection between two related fields, namely coastal hydrography and marine robotics. On one side, it shows how the exploration of the ocean can be performed by autonomous underwater vehicles; on the other side, it shows how some methods from hydrography can be implemented in the localization and navigation of such vehicles, e.g. for target identification or path finding. Partially based on contributions presented at the conference Quantitative Monitoring of Underwater Environment, MOQESM, held on October 11-12, 2016, Brest, France, this book includes carefully revised and extended chapters presented at the conference, together with original papers not related to the event. All in all, it provides readers with a snapshot of current methods for sonar track registration, multi-vehicles control, collective exploration of underwater environments, optimization of propulsion systems, among others. More than that, the book is aimed as source of inspiration and tool to promote further discussions and collaboration between hydrographers, robotic specialists and other related communities.
This book presents the cutting edge developments within a broad field related to robotic sailing. The contributions were presented during the 8th International Robotic Sailing Conference, which has taken place as a part of the 2015 World Robotic Sailing Championships in Mariehamn, Åland (Finland), August 31st – September 4th 2015. Since more than a decade, a series of competitions such as the World Robotic Sailing Championship have stimulated a variety of groups to work on research and development around autonomous sailing robots, which involves boat designers, naval architects, electrical engineers and computer scientists. While many of the challenges in building a truly autonomous sailboat are still unsolved, the books presents the state of the art of research and development within platform optimization, route and stability planning, collision avoidance, power management and boat control.
An autonomous sailboat robot is a boat that only uses the wind on its sail as the propelling force, without remote control or human assistance to achieve its mission. Robotic sailing offers the potential of long range and long term autonomous wind propelled, solar or wave-powered carbon neutral devices. Robotic sailing devices could contribute to monitoring of environmental, ecological, meteorological, hydrographic and oceanographic data. These devices can also be used in traffic monitoring, border surveillance, security, assistance and rescue. The dependency on changing winds and sea conditions presents a considerable challenge for short and long term route and stability planning, collision...
Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists. Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International Robtoic Sailing Conference, which is taking place as part of the 2012 World Robotic Sailing Championships.
This book gathers a selection of papers presented at ROBOT 2019 – the Fourth Iberian Robotics Conference, held in Porto, Portugal, on November 20th–22nd, 2019. ROBOT 2019 is part of a series of conferences jointly organized by the SPR – Sociedade Portuguesa de Robótica (Portuguese Society for Robotics) and SEIDROB – Sociedad Española para la Investigación y Desarrollo en Robótica (Spanish Society for Research and Development in Robotics). ROBOT 2019 built upon several previous successful events, including three biannual workshops and the three previous installments of the Iberian Robotics Conference, and chiefly focused on presenting the latest findings and applications in robotics from the Iberian Peninsula, although the event was also open to research and researchers from other countries. The event featured five plenary talks on state-of-the-art topics and 16 special sessions, plus a main/general robotics track. In total, after a stringent review process, 112 high-quality papers written by authors from 24 countries were selected for publication.
This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and alg...
Robotic Sailing 2017. This book contains the peer-reviewed papers presented at the 10th International Robotic Sailing Conference which was organized in conjunction with the 10th World Robotic Sailing Championship held in Horten, Norway the 4th-9th of September 2017. The seven papers cover topics of interest for autonomous robotic sailing which represents some of the most challenging research and development areas. The book is divided into two parts. The first part contains papers which focus on the design of sails and software for the assessment and predication of sailboat performance as well as software platforms and middleware for sailboat competition and research. The second part includes...
Cet ouvrage est une réédition numérique d’un livre paru au XXe siècle, désormais indisponible dans son format d’origine.