You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is derived from the proceedings of the International Workshop on Nanomechanics held at Asilomar Conference Grounds in Pacific Grove, California on July 14-17, 2004. Approximately 70 leading experts from academia, government and industrial sectors in semiconductors, computers, communication, information technology, defense, energy, transportation and aerospace attended the Workshop (see the workshop photo taken on July 16, 2004). The main objective was to convene leading researchers in the nanotechnology community to assess the current state-of-the-art and disseminate recent progress, critical issues, barriers to applications, and directions for future research in nanomechanics. Min...
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, ...
The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.
Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological ...
This book contains a collection of latest research developments on the printed electronics from the material-related various processes to the interdisciplinary device applications. It is a promising new research area that has received a lot of highlights for low-cost and high-volume manufacturing in recent years. Here, you will find interesting reports on currently progressed science- and technology-related materials, fabrication processes, and various recent applications, including organic/inorganic semiconductor, textile, and biomedical engineering for the printed electronics. I hope that the book will provide the fundamental backgrounds of printed electronics to lead you for the creation of new research field and further promotion of future technology of the printed electronics.
MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
The Physics of Microdroplets gives the reader the theoretical and numerical tools to understand, explain, calculate, and predict the often nonintuitive observed behavior of droplets in microsystems. Microdrops and interfaces are now a common feature in most fluidic microsystems, from biology, to biotechnology, materials science, 3D-microelectronics, optofluidics, and mechatronics. On the other hand, the behavior of droplets and interfaces in today's microsystems is complicated and involves complex 3D geometrical considerations. From a numerical standpoint, the treatment of interfaces separating different immiscible phases is difficult. After a chapter dedicated to the general theory of wetti...
The Sixth International Conference on Miniaturized Chemical and Biochemical Analysis Systems, known as /JTAS2002, will be fully dedicated to the latest scientific and technological developments in the field of miniaturized devices and systems for realizing not only chemical and biochemical analysis but also synthesis. The first /JTAS meeting was held in Enschede in 1994 with approximately 160 participants, bringing together the scientists with background in analytical and biochemistry with those with Micro Electro Mechanical Systems (MEMS) in one workshop. We are grateful to Piet Bergveld and Albert van den Berg of MESA Research Institute of the University of Twente for their great efforts t...