You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A one-stop introduction to the methods of ergodic theory applied to holomorphic iteration that is ideal for graduate courses.
This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism. The authors work in a setting of generalized multimodal maps, that is, smooth maps f of a finite union of compact intervals Iˆ in R into R with non-flat critical points, such that on its maximal forward invariant set K the map f is topologically transitive and has positive topological entropy. They prove that several notions of non-unifor...
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
View the abstract.
John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put t...
This volume is the first international collection of the best physics problems (both theoretical and experimental) given at the national physics competitions for high school students in different countries. The book introduces the short history of the International Physics Olympiad, the Statutes, the Syllabus, the statistical data including complete list of winners and a collection of national reports. Each of the national report will contains — as a main part — the best theoretical and experimental problems (with complete solutions) given at the national competition or at the training of the team before the international competition. Taking into account that at present the International Physics Olympiad involves about 35 countries, we are sure that the book will be interesting for everybody involved with physics education not only with the physics olympiads.
This book offers a comprehensive exploration of fractal dimensions, self-similarity, and fractal curves. Aimed at undergraduate and graduate students, postdocs, mathematicians, and scientists across disciplines, this text requires minimal prerequisites beyond a solid foundation in undergraduate mathematics. While fractal geometry may seem esoteric, this book demystifies it by providing a thorough introduction to its mathematical underpinnings and applications. Complete proofs are provided for most of the key results, and exercises of different levels of difficulty are proposed throughout the book. Key topics covered include the Hausdorff metric, Hausdorff measure, and fractal dimensions such...
Collects papers that reflect some of the directions of research in two closely related fields: Complex Dynamics and Renormalization in Dynamical Systems. This title contains papers that introduces the reader to this fascinating world and a related area of transcendental dynamics. It also includes open problems and computer simulations.
About one and a half decades ago, Feigenbaum observed that bifurcations, from simple dynamics to complicated ones, in a family of folding mappings like quadratic polynomials follow a universal rule (Coullet and Tresser did some similar observation independently). This observation opened a new way to understanding transition from nonchaotic systems to chaotic or turbulent system in fluid dynamics and many other areas. The renormalization was used to explain this observed universality. This research monograph is intended to bring the reader to the frontier of this active research area which is concerned with renormalization and rigidity in real and complex one-dimensional dynamics. The research work of the author in the past several years will be included in this book. Most recent results and techniques developed by Sullivan and others for an understanding of this universality as well as the most basic and important techniques in the study of real and complex one-dimensional dynamics will also be included here.
This volume clearly reflects Ricardo Mane's legacy, his contribution to mathematics and the diversity of his mathematical intersts. It contains fifteen refereed research papers on thems including Hamiltonian and Lagrangian dynamics, growth rate of the number of geodesics on a compact manifold, one dimensional complex and real dynamics, and bifurcations and singular cycles. This book also contains two famous sets of notes by Ricardo Mane. One is the seminal paper on Lagrangian dynamics that he had prepared for the conference; the other is on the genericity of zero exponents area preserving diffeomorphisms on surfaces when non Anosov. This book will be of particular interest to researchers and graduate students in mathematics, mechanics and mathematical physics.