You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, t...
This book covers the mathematical idea of branching processes, and tailors it for a biological audience.
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, t...
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to...
Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties need...
BROWNIAN MOTION CALCULUS Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the random process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete-time setting. The continuous-time equivalent requires a new concept, the Itō stochastic integral. Its construction is explained step by step, ...
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
The third edition of this popular introduction to the classical underpinnings of the mathematics behind finance continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous arbitrage pricing of financial derivatives, including stochastic optimal control theory and Merton's fund separation theory, the book is designed for graduate students and combines necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. In this substantially extended new edition Bjork has added separate and complete chapters on the martingale approach to optimal investment problems, optimal stopping theory with applications to American options, and positive interest models and their connection to potential theory and stochastic discount factors. More advanced areas of study are clearly marked to help students and teachers use the book as it suits their needs.
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven t...
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stoch...