You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work addresses all of the major topics in Fourier series, emphasizing the concept of approximate identities and presenting applications, particularly in time series analysis. It stresses throughout the idea of homogenous Banach spaces and provides recent results. Techniques from functional analysis and measure theory are utilized.;College and university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
This book is the first serious attempt to gather all of the available theory of "nonharmonic Fourier series" in one place, combining published results with new results by the authors.
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operato...
This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centuries, the reader will appreciate how a mathematical theory develops in stages from a practical problem (such as conduction of heat) to an abstract theory dealing with concepts such as sets, functions, infinity, and convergence. The abstract theory then provides unforeseen applications in diverse areas. Exercises of varying difficulty are included throughout to test understanding. A broad range of applications are also covered, and directions for further reading and research are provided, along with a chapter that provides material at a more advanced level suitable for graduate students.
This reputable translation covers trigonometric Fourier series, orthogonal systems, double Fourier series, Bessel functions, the Eigenfunction method and its applications to mathematical physics, operations on Fourier series, and more. Over 100 problems. 1962 edition.
A compact, sophomore-to-senior-level guide, Dr. Seeley's text introduces Fourier series in the way that Joseph Fourier himself used them: as solutions of the heat equation in a disk. Emphasizing the relationship between physics and mathematics, Dr. Seeley focuses on results of greatest significance to modern readers. Starting with a physical problem, Dr. Seeley sets up and analyzes the mathematical modes, establishes the principal properties, and then proceeds to apply these results and methods to new situations. The chapter on Fourier transforms derives analogs of the results obtained for Fourier series, which the author applies to the analysis of a problem of heat conduction. Numerous computational and theoretical problems appear throughout the text.
It was with the publication of Norbert Wiener's book ''The Fourier In tegral and Certain of Its Applications" [165] in 1933 by Cambridge Univer sity Press that the mathematical community came to realize that there is an alternative approach to the study of c1assical Fourier Analysis, namely, through the theory of c1assical orthogonal polynomials. Little would he know at that time that this little idea of his would help usher in a new and exiting branch of c1assical analysis called q-Fourier Analysis. Attempts at finding q-analogs of Fourier and other related transforms were made by other authors, but it took the mathematical insight and instincts of none other then Richard Askey, the grand m...
None