You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematics for Engineers offers a comprehensive treatment of the core mathematical topics required for a modern engineering degree. The book begins with an introduction to the basics of mathematical reasoning and builds up the level of complexity as it progresses. The approach of the book is to build understanding through engagement, with numerous exercises and illuminating examples throughout the text designed to foster a practical understanding of the topics under discussion. Features Replete with examples, exercises, and applications Suitable for engineers but also for other students of the quantitative sciences Written in an engaging and accessible style while preserving absolute rigor.
Vibration is a phenomenon that we can perceive in many systems. Their effects are as diverse as the personal discomfort that can produce the unevenness of a road or the collapse of a building or a bridge during an earthquake. This book is a compendium of research works on vibration analysis and control. It goes through new methodologies that help us understand and mitigate this phenomenon. This book is divided into two sections. The first one is devoted to new advances on vibration analysis while the second part is a series of case studies that illustrate novel techniques on vibration control. The applications are varied and include areas such as vehicle suspension systems, wind turbines and civil engineering structures.
Pattern recognition continued to be one of the important research fields in computer science and electrical engineering. Lots of new applications are emerging, and hence pattern analysis and synthesis become significant subfields in pattern recognition. This book is an edited volume and has six chapters arranged into two sections, namely, pattern recognition analysis and pattern recognition applications. This book will be useful for graduate students, researchers, and practicing engineers working in the field of machine vision and computer science and engineering.
This book is a printed edition of the Special Issue "Wind Turbines" that was published in Energies
"This book seeks to advance cutting-edge research in the field, with a special focus on cross-disciplinary work involving recent advances in IT, enabling structural-health experts to wield groundbreaking new models of artificial intelligence as a diagnostic tool capable of identifying future problems before they even appear"--Provided by publisher.
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their abili...
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
This volume gathers the latest advances, innovations, and applications in the field of structural health monitoring (SHM) and more broadly in the fields of smart materials and intelligent systems, as presented by leading international researchers and engineers at the 10th European Workshop on Structural Health Monitoring (EWSHM), held in Palermo, Italy on July 4-7, 2022. The volume covers highly diverse topics, including signal processing, smart sensors, autonomous systems, remote sensing and support, UAV platforms for SHM, Internet of Things, Industry 4.0, and SHM for civil structures and infrastructures. The contributions, which are published after a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.
Selected, peer reviewed papers from the 2016 China Functional Material Technology and Industry Forum, July, 25-28, 2016, Chongqing, China
This book reports on the latest advances in concepts and further developments of principal component analysis (PCA), addressing a number of open problems related to dimensional reduction techniques and their extensions in detail. Bringing together research results previously scattered throughout many scientific journals papers worldwide, the book presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and especially focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA.