You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Wind energy is now the world's fastest growing energy source. In the past 10 years, the global wind energy capacity has increased rapidly. The installed global wind power capacity has grown to 47.317 GW from about 3.5 GW in 1994. The global wind power industry installed 7976 MW in 2004, an increase in total installed generating capacity of 20%. The phenomenal growth in the wind energy industry can be attributed to the concerns to the environmental issues, and research and development of innovative cost-reducing technologies. Denmark is a leading producer of wind turbines in the world, with an almost 40% share of the total worldwide production. The wind energy industry is a giant contributor ...
The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity.
Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book ...
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various...
The authors were originally brought together to share research and applications through the international Danfoss Professor Programme at Aalborg University in Denmark. Personal computers would be unwieldy and inefficient without power electronic dc supplies. Portable communication devices and computers would also be impractical. High-performance lighting systems, motor controls, and a wide range of industrial controls depend on power electronics. In the near future we can expect strong growth in automotive applications, dc power supplies for communication systems, portable applications, and high-end converters. We are approaching a time when all electrical energy will be processed and controlled through power electronics somewhere in the path from generation to end use. - The most up-to-date information available is presented in the text - Written by a world renowned leader in the field
Control of Power Electronic Converters and Systems examines the theory behind power electronic converter control, including operation, modeling and control of basic converters. The book explores how to manipulate components of power electronics converters and systems to produce a desired effect by controlling system variables. Advances in power electronics enable new applications to emerge and performance improvement in existing applications. These advances rely on control effectiveness, making it essential to apply appropriate control schemes to the converter and system to obtain the desired performance. - Discusses different applications and their control - Explains the most important controller design methods both in analog and digital - Describes different important applications to be used in future industrial products - Covers voltage source converters in significant detail - Demonstrates applications across a much broader context
Due to the increasing world population, energy consumption is steadily climbing, and there is a demand to provide solutions for sustainable and renewable energy production, such as wind turbines and photovoltaics. Power electronics are being used to interface renewable sources in order to maximize the energy yield, as well as smoothly integrate them within the grid. In many cases, power electronics are able to ensure a large amount of energy saving in pumps, compressors, and ventilation systems. This book explains the operations behind different renewable generation technologies in order to better prepare the reader for practical applications. Multiple chapters are included on the state-of-the-art and possible technology developments within the next 15 years. The book provides a comprehensive overview of the current renewable energy technology in terms of system configuration, power circuit usage, and control. It contains two design examples for small wind turbine system and PV power system, respectively, which are useful for real-life installation, as well as many computer simulation models.
Control of Power Electronic Converters, Volume Two gives the theory behind power electronic converter control and discusses the operation, modelling and control of basic converters. The main components of power electronics systems that produce a desired effect (energy conversion, robot motion, etc.) by controlling system variables (voltages and currents) are thoroughly covered. Both small (mobile phones, computer power supplies) and very large systems (trains, wind turbines, high voltage power lines) and their power ranges, from the Watt to the Gigawatt, are presented and explored. Users will find a focused resource on how to apply innovative control techniques for power converters and drives. - Discusses different applications and their control - Explains the most important controller design methods, both in analog and digital - Describes different, but important, applications that can be used in future industrial products - Covers voltage source converters in significant detail - Demonstrates applications across a much broader context
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (phot...
SMART GRID AND ENABLING TECHNOLOGIES Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foun...