You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Many physical phenomena are described by nonlinear evolution equation. Those that are integrable provide various mathematical methods, presented by experts in this tutorial book, to find special analytic solutions to both integrable and partially integrable equations. The direct method to build solutions includes the analysis of singularities à la Painlevé, Lie symmetries leaving the equation invariant, extension of the Hirota method, construction of the nonlinear superposition formula. The main inverse method described here relies on the bi-hamiltonian structure of integrable equations. The book also presents some extension to equations with discrete independent and dependent variables. The different chapters face from different points of view the theory of exact solutions and of the complete integrability of nonlinear evolution equations. Several examples and applications to concrete problems allow the reader to experience directly the power of the different machineries involved.
The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.
This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at Independent University of Moscow and Moscow State University, Moscow, Russia. The papers reflect the modern interplay between partial differential equations and various aspects of algebra and computer science. The topics discussed are: relations between integrability and differential rings, supermanifolds, differential calculus over graded algebras, noncommutative generalizations of PDEs, quantum vector fields, generalized Nijenhuis torsion, cohomological approach to the geometry of differential equations, the argument shift method, Frölicher structures in the formal Kadomtsev–Petviashvili hierarchy, and computer-based determination of optimal systems of Lie subalgebras. The companion volume (Contemporary Mathematics, Volume 788) is devoted to Geometry and Mathematical Physics.
Classical field theory has undergone a renaissance in recent years. Symplectic techniques have yielded deep insights into its foundations, as has an improved understanding of the variational calculus. Further impetus for the study of classical fields has come from other areas, such as integrable systems, Poisson geometry, global analysis, and quantum theory. This book contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, held in July 1991 at the University of Washington at Seattle. The conference brought together researchers in many of the main areas of classical field theory to present the latest ideas and results. T...
The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. Bäcklund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics.
This book describes in detail the basic context of the Banach setting and the most important Lie structures found in finite dimension. The authors expose these concepts in the convenient framework which is a common context for projective and direct limits of Banach structures. The book presents sufficient conditions under which these structures exist by passing to such limits. In fact, such limits appear naturally in many mathematical and physical domains. Many examples in various fields illustrate the different concepts introduced. Many geometric structures, existing in the Banach setting, are "stable" by passing to projective and direct limits with adequate conditions. The convenient frame...
The theory of Dirichlet forms has witnessed recently some very important developments both in theoretical foundations and in applications (stochasticprocesses, quantum field theory, composite materials,...). It was therefore felt timely to have on this subject a CIME school, in which leading experts in the field would present both the basic foundations of the theory and some of the recent applications. The six courses covered the basic theory and applications to: - Stochastic processes and potential theory (M. Fukushima and M. Roeckner) - Regularity problems for solutions to elliptic equations in general domains (E. Fabes and C. Kenig) - Hypercontractivity of semigroups, logarithmic Sobolev inequalities and relation to statistical mechanics (L. Gross and D. Stroock). The School had a constant and active participation of young researchers, both from Italy and abroad.