You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The author presents a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. The local weighted residuals, that result from an extension of the so-called Dual-Weighted-Residual method, are used in a feed-back process for generating economical meshes. Based on several model problems, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities.
Finite Element Methods are used for numerous engineering applications where numerical solutions of partial differential equations are needed. As computers can now deal with the millions of parameters used in these methods, automatic error estimation and automatic adaptation of the utilised method (according to this error estimation), has become a hot research topic. This text offers comprehensive coverage of this new field of automatic adaptation and error estimation, bringing together the work of eight outstanding researchers in this field who have completed a six year national research project within the German Science Foundation. The result is a state-of-the-art work in true reference style. Each chapter is self-contained and covers theoretical, algorithmic and software presentations as well as solved problems. A main feature consists of several carefully elaborated benchmarks of 2D- and 3D- applications. First book to go beyond the Finite Element Method in itself Covers material from a new research area Presents benchmarks of 2D- and 3D- applications Fits with the new trend for genetic strategies in engineering
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with eq...
These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate te...
This book presents advances in high performance computing as well as advances accomplished using high performance computing. It contains a collection of papers presenting results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering. From science problems to mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers, the book presents state-of-the-art methods and technology, and exemplary results in these fields.
This volume contains the proceedings of an international conference on high performance scientific and engineering computing held in Munich in March 1998 and organized by FORTWIHR, the Bavarian Consortium for High Performance Scientific Computing. The 38 contributions cover engineering applications for numerical simulation from the fields fluid flow, optimal control, crystal growth and semiconductor technology, as well as numerical simulation in astrophysics or quantum chemistry. In contrast to related collections, the reader gets a really interdisciplinary spectrum of the state of the art of selected topics of scientific computing with recent results of research groups from applied mathematics, computer science, engineering, physics and chemistry.
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.
Traditionally, radiative transfer has been the domain of astrophysicists and climatologists. In nuclear technology one has been dealing with the ana- gous equations of neutron transport. In recent years, applications of radiative transferincombustionmachinedesignandinmedicinebecamemoreandmore important. In all these disciplines one uses the radiative transfer equation to model the formation of the radiation ?eld and its propagation. For slabs and spheres e?ective algorithms for the solution of the transfer equation have been ava- able for quite some time. In addition, the analysis of the equation is quite well developed. Unfortunately, in many modern applications the approximation of a 1D ge...
None