You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Annual European Meeting of the Association for Symbolic Logic, also known as the Logic Colloquium, is among the most prestigious annual meetings in the field. The current volume, Logic Colloquium 2007, with contributions from plenary speakers and selected special session speakers, contains both expository and research papers by some of the best logicians in the world. This volume covers many areas of contemporary logic: model theory, proof theory, set theory, and computer science, as well as philosophical logic, including tutorials on cardinal arithmetic, on Pillay's conjecture, and on automatic structures. This volume will be invaluable for experts as well as those interested in an overview of central contemporary themes in mathematical logic.
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
This volume contains selected expository lectures delivered at the annual Maurice Auslander Distinguished Lectures and International Conference over the last several years. Reflecting the diverse landscape of modern representation theory of algebras, the selected articles include: a quick introduction to silting modules; a survey on the first decade of co-t-structures in triangulated categories; a functorial approach to the notion of module; a representation-theoretic approach to recollements in abelian categories; new examples of applications of relative homological algebra; connections between Coxeter groups and quiver representations; and recent progress on limits of approximation theory.
This volume can be divided into two parts: a purely mathematical part with contributions on finance mathematics, interactions between geometry and physics and different areas of mathematics; another part on the popularization of mathematics and the situation of women in mathematics.
This text provides a critical overview of current thinking about equity issues in the teaching and learning of mathematics. Grounded in feminist theories of curriculum change and a broad range of cultural perspectives, the new approaches described here go beyond "special programmes" and "experimental treatments" designed to correct perceived problems and deficits. Instead they establish how improved instructional practices and a fuller understanding of the nature of the mathematical enterprise can overcome the systemic obstacles that have thwarted women's participation in this important field.; This book will appeal to all those who are interested in the mathematical education of women, including teachers, parents, administrators and researchers.
Fourteen papers presented at the 1987 European Summer Meeting of the Association for Symbolic Logic are collected in this volume.The main areas covered by the conference were Logic, Set Theory, Recursion Theory, Model Theory, Logic for Computer Science and Semantics of Natural Languages.
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Fourteen papers presented at the 1987 European Summer Meeting of the Association for Symbolic Logic are collected in this volume. The main areas covered by the conference were Logic, Set Theory, Recursion Theory, Model Theory, Logic for Computer Science and Semantics of Natural Languages.
This volume contains the proceedings of the AMS Special Session on Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry, held on January 8, 2016, in Seattle, Washington. Algebraic curves and their fibrations have played a major role in both mathematical physics and arithmetic geometry. This volume focuses on the role of higher genus curves; in particular, hyperelliptic and superelliptic curves in algebraic geometry and mathematical physics. The articles in this volume investigate the automorphism groups of curves and superelliptic curves and results regarding integral points on curves and their applications in mirror symmetry. Moreover, geometric subjects are addressed, such as elliptic 3 surfaces over the rationals, the birational type of Hurwitz spaces, and links between projective geometry and abelian functions.
Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.