You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Lead Chalcogenides remain one of the basic materials of modern infrared optoelectronics. This volume presents the [roperties of lead chalcogenides, including the basic physical features, the bulk and epitaxial growth technique, and the 2-D physics of lead chalcogenide-based structures. In addition, the theoretical appraoches for band structure and impurity state calculations are reviewed.
During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.
Annotation Beginning with a concise review of the physics and chemistry of polymers and their structure and morphology, this book goes on to describe and explain the common methods of characterizing polymers, including optical microscopy, scanning electron microscopy and transmission electron microscopy, among others. Also covered are the characterization and modification of such surface properties as adhesion, wetting, tribology, and surface thermodynamics.
None
During recent years our enthusiasm for this field has continually increased. This book presents expert contributions describing the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.
Heteroepitaxial films are commonplace among today's electronic and photonic devices. The realization of new and better devices relies on the refinement of epitaxial techniques and improved understanding of the physics underlying epitaxial growth. This book provides an up-to-date report on a wide range of materials systems. The first half reviews metallic and dielectric thin films, including chapters on metals, rare earths, metal-oxide layers, fluorides, and high-c superconductors. The second half covers semiconductor systems, reviewing developments in group-IV, arsenide, phosphide, antimonide, nitride, II-VI and IV-VI heteroepitaxy. Topics important to several systems are covered in chapters on atomic processes, ordering and growth dynamics.
In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and unequivocal presentation of the subject in the form of an easy-to-read review. A large part of this book focuses on the problems of heteroepitaxy. The most important epitaxial growth techniques which are currently widely used in basic research as well as in manufacturing processes of devices are presented and discussed in detail.
Optoelectronic devices operating in the mid-infrared wavelength range offer applications in a variety of areas from environmental gas monitoring around oil rigs to the detection of narcotics. They could also be used for free-space optical communications, thermal imaging applications and the development of "homeland security" measures. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological development in this rapidly emerging area; the basic physics, some of the problems facing the design engineer and a comparison of possible solutions are laid out; the different lasers used as sources for mid-infrared technology are considered; recent work in detectors is reviewed; the last part of the book is concerned with applications. With a world-wide authorship of experts working in many mid-infrared-related fields this book will be an invaluable reference for researchers and graduate students drawn from physics, electronic and electrical engineering and materials science.