You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The concept of using encapsulation for the immunoprotection of transplanted cells was introduced for the first time in the 1960s. "[Microencapsulated cells] might be protected from destruction and from partici pation in immunological processes, while the enclosing membrane would be permeable to small molecules of specific cellular product which could then enter the general extracellular compartment of the recipient. For instance, encapsulated endocrine cells might survive and maintain an effective supply of hormone." (Chang, Ph. D. Thesis, McGill University, 1965; Chang et aI., Can J Physiol PharmacoI44:115-128, 1966). We asked Connaught Laboratories, Ltd., in Toronto to put this concept int...
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccha...
Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenol...
Bioactive Carbohydrate Polymers is probably the first book dealing with the latest in the field of polysaccharides and related products and their biological activities, especially the immunological effects. The different chapters describe the structure and bioactivity of polysaccharides from plants used in traditional medicine in different parts of the world, especially China, Japan and Europe. The focus of the book is on immunologically active plant and seaweed polysaccharides, pharmacological activities of sulphated polysaccharides of animal and seaweed origin, and on possible activities of polysaccharides in our food. Methods for isolation and characterisation of the polymers with chemical and enzymatic methods is covered, as well as discussions on the different biological test-systems and the information they provide. This book will be useful to scientists and postgraduate students working with polysaccharides and their possible uses, and should be of interest for people working in the areas of chemistry, biology, pharmacy and medicine.
The main driving force behind the development of new applications for chitin and its derivative chitosan lies with the fact that these polysaccharides represent a renewable source of natural biodegradable polymers. Since chitin is the second most abundant natural polymer, academic as well as industrial scientists are faced with a great challenge to find new and practical applications for this material. This book provides an examination of the state of the art, and discusses new applications as well as potential products. Applications of Chitin and Chitosan deals almost exclusively with applications. Previous books in the field have devoted less than 30% of their material to commercial or med...
Cell Immobilisation Biotechnology Biotechnology is divided into two volumes. The first volume is dedicated to fundamental aspects of cell immobilisation while the second volume deals with the diverse applications of this technology. The first volume, Fundamentals of Cell Immobilisation Biotechnology, comprises 26 chapters arranged into four parts: Materials for cell immobilisation/encapsulation, Methods and technologies for cell immobilisation/encapsulation, Carrier characterisation and bioreactor design, and Physiology of immobilised cells: techniques and mathematical modelling.
Cell immobilisation biotechnology is a multidisciplinary area, shown to have an important impact on many scientific subdisciplines – including biomedicine, pharmacology, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment, analytical applications, biologics production. "Cell Immobilisation Biotechnology" is an outcome of the editors’ intention to collate the extensive and widespread information on fundamental aspects and applications of immobilisation/encapsulation biotechnology into a comprehensive reference work and to provide an overview of the most recent results and developments in this domain. "Cell Immobilisation Biotechnology" is divided into the two book volumes, FOBI 8A and FOBI 8B. The FOBI 8A volume, Fundamentals of Cell Immobilisation Biotechnology, is dedicated to fundamental aspects of cell immobilisation while the present volume, FOBI 8B, Applications of Cell Immobilisation Biotechnology, deals with diverse applications of this technology.
Now in its fourth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fourth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material scie...
For centuries man has treated food to prolong its edible life, and nowadays both traditional and modern preservatives are used widely to ensure the satisfactory maintenance of quality and safety of foods. There continues to be increased public concern about the use of food additives, including preservatives, resulting from a perception that some of them may have deleterious effects on health. However, as eating habits have changed with an emphasis on what has been popularly termed a `healthy diet', there is at the same time a concern that reduction in preservative usage could lead to loss of safety and protection from food poisoning. While some preservatives are coming under increasing regul...
Leading experts provide a comprehensive overview of recent progress in the synthesis of different hydrogels and their biomedical applications.