You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables. It also includes applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods, and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition.
The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.
Originally published: New York: Plenum Press, 1988.
Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrate...
This classic work gives an excellent overview of the subject, with an emphasis on clarity, explanation, and motivation. Extensive exercises and a valuable section containing hints and answers make this an excellent text for both classroom use and independent study.
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.
Originally published: New York: Academic Press, 1983.
Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.
An encyclopaedic coverage of the literature in the area of ranking and selection procedures. It also deals with the estimation of unknown ordered parameters. This book can serve as a text for a graduate topics course in ranking and selection. It is also a valuable reference for researchers and practitioners.
Originally published: Boston: Pitman Advanced Pub. Program, 1985.