You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential...
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential...
This text corresponds to a graduate mathematics course taught at Carnegie Mellon University in the spring of 1999. Included are comments added to the lecture notes, a bibliography containing 23 items, and brief biographical information for all scientists mentioned in the text, thus showing that the creation of scientific knowledge is an international enterprise.
Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of François Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science, new mathematical tools must be introduced, like the author’s H-measures, variants by Patrick Gérard, and others yet to be discovered.
This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.
Proceedings of the Second International Conference on Trends in Semigroup Theory and Evolution Equations held Sept. 1989, Delft University of Technology, the Netherlands. Papers deal with recent developments in semigroup theory (e.g., positive, dual, integrated), and nonlinear evolution equations (e
This book introduces numerical issues that arise in linear algebra and its applications. It touches on a wide range of techniques, including direct and iterative methods, orthogonal factorizations, least squares, eigenproblems, and nonlinear equations. Detailed explanations on a wide range of topics from condition numbers to singular value decomposition are provided, as well as material on nonlinear and linear systems. Numerical examples, often based on discretizations of boundary-value problems, are used to illustrate concepts. Exercises with detailed solutions are provided at the end of the book, and supplementary material and updates are available online. This Classics edition is appropriate for junior and senior undergraduate students and beginning graduate students in courses such as advanced numerical analysis, special topics on numerical analysis, topics on data science, topics on numerical optimization, and topics on approximation theory.
For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.