Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Geometry of Physics
  • Language: en
  • Pages: 617

The Geometry of Physics

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers, quarks, and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should be of interest also to mathematics students. Ideal for graduate and advanced undergraduate students of physics, engineering and mathematics as a course text or for self study.

Urban Geometry
  • Language: en
  • Pages: 128

Urban Geometry

  • Type: Book
  • -
  • Published: 2020-10-08
  • -
  • Publisher: Unknown

From Stockholm to Seoul, Tartu to Taipei, Spanish photographer Andres Gallardo Albajar has travelled the globe to capture the mesmerising sihouettes, colourful juxtapositions and angular forms of the world's most exciting buildings. Set against vivid skies, these buildings pop with colour, shape and geometric patterns making the book a riotous celebration of contemporary architecture.

Riemannian Geometry and Geometric Analysis
  • Language: en
  • Pages: 589

Riemannian Geometry and Geometric Analysis

This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. This new edition introduces and explains the ideas of the parabolic methods that have recently found such spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discusses further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry.

Geometry
  • Language: en
  • Pages: 516

Geometry

This is an undergraduate textbook that reveals the intricacies of geometry. The approach used is that a geometry is a space together with a set of transformations of that space (as argued by Klein in his Erlangen programme). The authors explore various geometries: affine, projective, inversive, non-Euclidean and spherical. In each case the key results are explained carefully, and the relationships between the geometries are discussed. This richly illustrated and clearly written text includes full solutions to over 200 problems, and is suitable both for undergraduate courses on geometry and as a resource for self study.

Elasticity and Geometry
  • Language: en
  • Pages: 597

Elasticity and Geometry

We experience elasticity everywhere in everyday life. This book covers several modern aspects of the established field of elasticity theory, applying general methods of classical analysis including advanced nonlinear aspects to derive detailed solutions to specific problems. It can serve as an introduction to nonlinear methods in science.

Lectures on Formal and Rigid Geometry
  • Language: en
  • Pages: 255

Lectures on Formal and Rigid Geometry

  • Type: Book
  • -
  • Published: 2014-08-22
  • -
  • Publisher: Springer

The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".

Computational Geometry
  • Language: en
  • Pages: 370

Computational Geometry

This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Geometry VI
  • Language: en
  • Pages: 536

Geometry VI

This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. The author successfully combines the co-ordinate and invariant approaches to differential geometry, giving the reader tools for practical calculations as well as a theoretical understanding of the subject.

The Geometry of Jet Bundles
  • Language: en

The Geometry of Jet Bundles

The purpose of this book is to provide an introduction to the theory of jet bundles for mathematicians and physicists who wish to study differential equations, particularly those associated with the calculus of variations, in a modern geometric way. One of the themes of the book is that first-order jets may be considered as the natural generalisation of vector fields for studying variational problems in field theory, and so many of the constructions are introduced in the context of first- or second-order jets, before being described in their full generality. The book includes a proof of the local exactness of the variational bicomplex. A knowledge of differential geometry is assumed by the author, although introductory chapters include the necessary background of fibred manifolds, and on vector and affine bundles. Coordinate-free techniques are used throughout, although coordinate representations are often used in proofs and when considering applications.

Riders in Geometry
  • Language: en
  • Pages: 153

Riders in Geometry

Originally published in 1929, this book presents a guide to riders in geometry aimed at students of matriculation or School Certificate standard. The text is divided into three main sections: 'The straight line'; 'The circle'; 'General'. Exercises are included at the end of each section. This book will be of value to anyone with an interest in geometry, mathematics and the history of education.