You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.
None
History of the families Millingas and Millanges of Saxony and Normandy, comprising genealogies and biographies of their posterity surnamed Milliken, Millikin, Millikan, Millican, Milligan, Mulliken and Mullikin, A. D. 800-A. D. 1907.
Analysis of covariance is a very useful but often misunderstood methodology for analyzing data where important characteristics of the experimental units are measured but not included as factors in the design. Analysis of Messy Data, Volume 3: Analysis of Covariance takes the unique approach of treating the analysis of covariance problem by looking
Researchers often do not analyze nonreplicated experiments statistically because they are unfamiliar with existing statistical methods that may be applicable. Analysis of Messy Data, Volume II details the statistical methods appropriate for nonreplicated experiments and explores ways to use statistical software to make the required computations feasible.
None
None
None
None