You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This contributed volume presents computational models of diabetes that quantify the dynamic interrelationships among key physiological variables implicated in the underlying physiology under a variety of metabolic and behavioral conditions. These variables comprise for example blood glucose concentration and various hormones such as insulin, glucagon, epinephrine, norepinephrine as well as cortisol. The presented models provide a powerful diagnostic tool but may also enable treatment via long-term glucose regulation in diabetics through closed-look model-reference control using frequent insulin infusions, which are administered by implanted programmable micro-pumps. This research volume aims at presenting state-of-the-art research on this subject and demonstrating the potential applications of modeling to the diagnosis and treatment of diabetes. The target audience primarily comprises research and experts in the field but the book may also be beneficial for graduate students.
In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems and information retrieval to healthcare and finance. This success is due to its stellar performance combined with attractive properties, such as learning from less feedback. The multiarmed bandit field is currently experiencing a renaissance, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This book aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize the state-of-the-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this burgeoning field.
Post Genomic Perspectives in Modeling and Control of Breathing is comprised of the proceedings of the IXth Oxford Conference on Modeling and Control of Breathing, held September 13-16, 2003 in Paris, France. This publication is placed within the general framework of post-genomic neurobiology, pathology, and the precise example of the rhythmic respiratory neural assembly being used to understand how genetic networks have been selected and conserved in the vertebrate brain. Specific topics include: ion channels and synapses responsible for respiratory rhythmogenesis and plasticity; pre- and post-natal development of the respiratory rhythm; chemosensory transduction and chemo-afferent signalling. These valuable insights open new avenues as to why the genetic codes underlying a vital function such as breathing have been selected, conserved, or optimized during evolution – a major issue of post-genomic biology. This critical issue will be considered from both top-down and bottom-up integrative modeling standpoints, with a view to elucidating the functional genomics linking discrete molecules to the integrated system that regulates breathing.
Biomedical Engineering is a highly interdisciplinary and well established discipline spanning across engineering, medicine and biology. A single definition of Biomedical Engineering is hardly unanimously accepted but it is often easier to identify what activities are included in it. This volume collects works on recent advances in Biomedical Engineering and provides a bird-view on a very broad field, ranging from purely theoretical frameworks to clinical applications and from diagnosis to treatment.
These proceedings cover such topics as: cardiovascular and respiratory systems; imaging and image processing; micro and nanotechnologies in medicine and biology; information technology in BME; neuromuscular systems and rehabilitation engineering; and management and telemedicine.
The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data. This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.
This volume comprises the papers presented at the Seventh International Workshop on Scattering Theory and Biomedical Engineering, focusing on the hottest topics in scattering theory and biomedical technology.All the contributions are state-of-the-art and have been fully reviewed. The authors are recognized as being eminent both in their field and in the science community.