You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
The Symposium on the Current State and Prospects of Mathematics was held in Barcelona from June 13 to June 18, 1991. Seven invited Fields medalists gavetalks on the development of their respective research fields. The contents of all lectures were collected in the volume, together witha transcription of a round table discussion held during the Symposium. All papers are expository. Some parts include precise technical statements of recent results, but the greater part consists of narrative text addressed to a very broad mathematical public. CONTENTS: R. Thom: Leaving Mathematics for Philosophy.- S. Novikov: Role of Integrable Models in the Development of Mathematics.- S.-T. Yau: The Current State and Prospects of Geometry and Nonlinear Differential Equations.- A. Connes: Noncommutative Geometry.- S. Smale: Theory of Computation.- V. Jones: Knots in Mathematics and Physics.- G. Faltings: Recent Progress in Diophantine Geometry.
Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments
None
None