You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This interdisciplinary handbook provides extensive information about research in medieval studies and its most important results over the last decades. The handbook is a reference work which enables the readers to quickly and purposely gain insight into the important research discussions and to inform themselves about the current status of research in the field. The handbook consists of four parts. The first, large section offers articles on all of the main disciplines and discussions of the field. The second section presents articles on the key concepts of modern medieval studies and the debates therein. The third section is a lexicon of the most important text genres of the Middle Ages. The fourth section provides an international bio-bibliographical lexicon of the most prominent medievalists in all disciplines. A comprehensive bibliography rounds off the compendium. The result is a reference work which exhaustively documents the current status of research in medieval studies and brings the disciplines and experts of the field together.
New high-tech developments in the field of optics show increasing applicability not only in classical technological fields but also in the humanities. This book contains selected contributions to an international, interdisciplinary joint conference on "New Technologies in the Humanities" and "Optics Within Life Sciences". Its objective is to forward interdisciplinary information and communication between specialists in optics, medicine, biology, environmental sciences, and cultural heritage. It is unique as a presentation of new optical technologies for cultural heritage protection.
More profound understanding of the nature of light and light-matter interactions in biology has enabled many applications in the biology and medical fields. So a new discipline is born, namely biophotonics. The aim of this book is to review the current state-of-the-art of the field by means of authoritative chapters written by the world leaders of the respective fields. This book will be useful not only to professionals, but also to graduate students interested in this field.
Since 1995, when Costas Fotakis first brought together restorers and scientists to discuss the potential of lasers in art conservation, the field has grown enormously in importance, and today restorers and laser scientists work together to develop new applications. This book presents the more than six dozen research papers prepared for LACONA V (Lasers in Art Conservation), held in Osnabrueck/Germany in September 2003. The fifth congress once again gathered restorers, art historians, museum staff, laser scientists and laser manufacturers. The topics include, among others: laser cleaning of artworks (case studies and side effects), removal of former conservation layers, fundamentals of laser-artwork interaction, online monitoring and process control, laser diagnostics, spectroscopy for monitoring and identification, networks and cooperation projects.
This is the fifth in a series initiated in 1989 by the International Commission for Optics (ICO). These books, which are published every three years, highlight the advances in optics that are underway at the time of their publication. These are a collection of significant contributions from leading scientists and engineers throughout the world. It shows the diverse role optics play in modern society, with optics now taking its place along with mechanical, thermal, electrical and electronic options, in order to bring solutions. The world is coming to recognize the ubiquitous nature of optics and its primarily enabling role in our everyday world.
It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This new series presents leading edge research on optics and lasers from researchers spanning the globe.
What Is Holography Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images, but it also has a wide range of other applications. In principle, it is possible to make a hologram for any type of wave. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Holography Chapter 2: Diffraction Chapter 3: Microscopy Chapter 4: Interferometry Chapter 5: Photorefractive effect Chapter 6: Particle image velocimetry Chapter 7: Holographic data storage Chapter 8: Interference lithography Chapter 9: Rainbow hologram Chapter 10: Holographic interferometry Chapter...
An account of a three-year research program funded by the German government, in which physicists and physical chemists set off together with biologists and physicians to develop new techniques for medical and biological problems and ended up with sophisticated scientific solutions and innovative equipment, partly ready for the market. It not only includes a concise description of the new discoveries but also offers also an introduction to the various fields within optics.
Following the previous OWLS conferences devoted to optics in life sciences, the 5th Conference focused on recent achievements in applying lasers and optics in biomedicine and in the preservation of our cultural heritage. Particular attention is thus paid to laser diagnostics in medicine, interaction of laser radiation with biological tissue, and the development of new systems for these studies. The contributors to this volume cover such international research activities as photon migration in tissue, fibre optics, lasers in dermatology, ENT, cardiology, and in art conservation, imaging techniques in archaeology, laser technologies in contemporary art, and new laser and opto-electronic systems for biomedical and art-related studies.
In 1989 the time was hot to create a workshop series dedicated to the dicussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial applications of optical metrology. However, such a workshop must take place in a dynamic environment. The- fore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 new prin- ples of optical shape measurement, setup calibration, phase unwr- ping and nondestructive testing were the focus of discussion, while in 1997 new approaches in mu...