Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to Tropical Geometry
  • Language: en
  • Pages: 378

Introduction to Tropical Geometry

Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied m...

Introduction to Analytic and Probabilistic Number Theory
  • Language: en
  • Pages: 656

Introduction to Analytic and Probabilistic Number Theory

This book provides a self contained, thorough introduction to the analytic and probabilistic methods of number theory. The prerequisites being reduced to classical contents of undergraduate courses, it offers to students and young researchers a systematic and consistent account on the subject. It is also a convenient tool for professional mathematicians, who may use it for basic references concerning many fundamental topics. Deliberately placing the methods before the results, the book will be of use beyond the particular material addressed directly. Each chapter is complemented with bibliographic notes, useful for descriptions of alternative viewpoints, and detailed exercises, often leading...

Hamilton-Jacobi Equations: Theory and Applications
  • Language: en
  • Pages: 339

Hamilton-Jacobi Equations: Theory and Applications

This book gives an extensive survey of many important topics in the theory of Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton–Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry–Mather theory, and weak Kolmogorov–Arnold–Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.

Geometric Structures on Manifolds
  • Language: en
  • Pages: 494

Geometric Structures on Manifolds

The theory of geometric structures on manifolds which are locally modeled on a homogeneous space of a Lie group traces back to Charles Ehresmann in the 1930s, although many examples had been studied previously. Such locally homogeneous geometric structures are special cases of Cartan connections where the associated curvature vanishes. This theory received a big boost in the 1970s when W. Thurston put his geometrization program for 3-manifolds in this context. The subject of this book is more ambitious in scope. Unlike Thurston's eight 3-dimensional geometries, it covers structures which are not metric structures, such as affine and projective structures. This book describes the known exampl...

Singular Perturbation in the Physical Sciences
  • Language: en
  • Pages: 346

Singular Perturbation in the Physical Sciences

This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutio...

Lectures on Navier-Stokes Equations
  • Language: en
  • Pages: 239

Lectures on Navier-Stokes Equations

This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to p...

Translation Surfaces
  • Language: en
  • Pages: 195

Translation Surfaces

This textbook offers an accessible introduction to translation surfaces. Building on modest prerequisites, the authors focus on the fundamentals behind big ideas in the field: ergodic properties of translation flows, counting problems for saddle connections, and associated renormalization techniques. Proofs that go beyond the introductory nature of the book are deftly omitted, allowing readers to develop essential tools and motivation before delving into the literature. Beginning with the fundamental example of the flat torus, the book goes on to establish the three equivalent definitions of translation surface. An introduction to the moduli space of translation surfaces follows, leading int...

Linear Algebra in Action
  • Language: en
  • Pages: 512

Linear Algebra in Action

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, ...

Frontiers in Geometry and Topology
  • Language: en
  • Pages: 320

Frontiers in Geometry and Topology

This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.

Lectures on Linear Partial Differential Equations
  • Language: en
  • Pages: 432

Lectures on Linear Partial Differential Equations

This is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form. The first three chapters are on elementary distribution theory and Sobolev spaces. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory.