You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Granular materials are an integral part of our everyday life. They are also the base material for most industrial processing techniques. The highly dissipative nature of the particle collisions means energy input is needed in order to mobilize the grains. This interplay of dissipation and excitation leads to a wide variety of pattern formation processes, which are addressed in this book. The reader is introduced to this wide field by, first, a description of the material properties of granular materials under different experimental conditions that are important in connection with the pattern formation dynamics and, second, by further details given later on in the description of the specific system.
This textbook compiles reports written by about 35 internationally recognized authorities, and covers a range of interests for geotechnical engineers. Topics include: fundamentals for mechanics of granular materials; continuum theory of granular materials; and discrete element approaches.
Focussing on the basic mechanics and underlying physics of granular material, Mechanics of Granular Matter starts with an introduction to contact mechanics of individual particles before moving on to a discussion of the structure of force chain networks and the influence on bulk mechanical properties of granular solids and granular flows. Furthermore, a preliminary multi scale framework is proposed for the nonlinear mechanics and strain localization in granular materials.
Granular materials play an important role in many industries. Continuous ingenuity and advancement in these industries necessitates the ability to predict the fundamental behaviour of granular materials under different working environments. With contributions from international experts in the field Granular Materials; Fundamentals and Applications details recent advances made in theoretical computational and experimental approaches in understanding the behaviour of granular materials including industrial applications. Topics covered include: * key features of granular plasticity * high temperature particle interactions * influence of polymers on particulate dispersion stability: scanning probe microscopy investigations * in-process measurement of particulate systems Presented by world renowned researchers this book will be welcomed by scientists and engineers working across a wide spectrum of engineering disciplines.
Explaining the science contained in a simple assembly of grains—the most abundant form of matter present on Earth. Granular media—composed of vast amounts of grains, consolidated or not—constitute the most abundant form of solid matter on Earth. Granular materials assemble in disordered configurations scientists often liken to a bag of marbles. Made of macroscopic particles rather than molecules, they defy the standard scheme of classification in terms of solid, liquid, and gas. Granular materials provide a model relevant to various domains of research, including engineering, physics, and biology. William Blake famously wished “To See a World in a Grain of Sand”; in this book, pion...
This introductory text develops the fundamental physics of the behavior of granular materials. It covers the basic properties of flow, friction, and fluidization of uniform granular materials; discusses mixing and segregation of heterogeneous materials (the famous "brazil-nut problem"); and concludes with an introduction to numerical models. The presentation begins with simple experiments and uses their results to build concepts and theorems about materials whose behavior is often quite counter-intuitive; presenting in a unified way the background needed to understand current work in the field. Developed for students at the University of Paris, the text will be suitable for advanced undergraduates and beginning graduates; while also being of interest to researchers and engineers just entering the field.
2007 account of developments in granular physics for researchers in statistical and mathematical physics.
This book presents a complete and comprehensive analysis of the behaviour of granular materials including the description of experimental results, the different ways to define the global behaviour from local phenomena at the particle scale, the various modellings which can be used for a D.E.M. analysis to solve practical problems and finally the analysis of strain localisation. The concepts developed in this book are applicable to many kinds of granular materials considered in civil, mechanical or chemical engineering.
This volume presents basic notions and fundamental properties of granular materials covering a wide spectrum of granular material mechanics. The granular materials may behave as fluids or solids or both. The grain size may span from microscopic to macroscopic scale. From the wet sand effect, Reynolds inspired in 1885 the notion of granular universe introducing the term "dilatancy." Bak, Tan, and Wisenfeld (1987, 1988) used the sand pile as a representative model of complex systems. In this collection of chapters, granular dynamics, granular flow from dilute to jammed states, dynamics of granular gas in microgravity, particle jetting induced by impulsive loadings, particle migration phenomena in embankment dams, and the grading entropy-based criteria of granular materials and filters are presented.
This contributed volume provides an up-to-date overview of the mechanics of granular materials, ranging from sparse media to soils. With chapters exploring state-of-the-art theoretical, experimental, and applied trends in the study of granular matter in various states, readers will be motivated to learn about the current challenges and potential avenues of exploration in this active area of research. Including a variety of perspectives, this volume will be a valuable reference for audiences in a number of fields. Specific topics covered include: X-ray tomography techniques for analyzing sand Evaluation of effective stress in unsaturated soils Hyper-plasticity Wave propagation in granular systems Partly saturated porous media Multi-scale approaches to the dynamics of sparse media Views on Microstructures in Granular Materials is an ideal resource for PhD students and researchers in applied mathematics, solid-state physics, civil engineering, and mechanical engineering.