You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This last volume of the SpringerBriefs in Space Life Sciences series is setup in 5 main parts. The 1st part shortly summarizes the history of life science research in space from the late 40s until today with focus on Europe and Germany, followed by a part on describing flight opportunities including the Space Shuttle/Spacelab system and the International Space Station ISS; in the 3rd part it focuses on extraordinary success stories of this constantly challenging research program and highlights some important key findings in space life science research. The book introduces in the 4th part innovative developments in non-invasive biomedical diagnostics and training methods for astronauts that emerge from this program and are of benefit for people on Earth especially in the aging society. Last but not least in its 5th part it closes with an outlook on the future of space life sciences in the upcoming era of space exploration. The book is intended for students and research scientists in the life sciences and biomedicine as well as for interested lay persons, who wish to get an overview of space life science research: its ́ early days, current status and future directions.
The Sixth International Congress on Photosynthesis took place from 1 to 6 August 1983, on the Campus of the "Vrije Universiteit Brussel", in Brussels, Belgium. These Proceedings contain most of the scientific contributions offered during the Congress. The Brussels Congress was the largest thus far held in the series of International Congresses on Photosynthesis. It counted over 1100 active participants. The organizers tried to minimize the disadvantages of such a large size by making maximum use of the facili ties available on a university campus. Most contributions were offered in the form of posters which were displayed in a substantial number of classrooms. The discussion sessions, twice ...
This book gives insight into the mechanism of the immune system and the influence of the environment on earth. Further, the book explains the changes that occur in our immune system in the absence of gravity and their fundamental consequences. Several limiting factors for human health and performance in microgravity have been clearly identified as an unacceptable risk for long-term and interplanetary flights. Serious concerns arose whether spaceflight-associated immune system dysfunction ultimately precludes the expansion of human presence beyond Earth's orbit. The immune system has undergone many evolutionary steps to cope with a new and changing environment, but `space` has not been evolut...
The book provides fundamental new insights in the structure and function of the healthy NeuroMuscular system. Recent findings suggest that the musculoskeletal system that supports movement control on Earth is controlled by unique principles of structural, biochemical and molecular characteristics. Mechanical loading by working against normal gravity helps to support principal structures in bone, muscle and associated subcellular scaffold components. Disuse or immobilization of the body in bed rest on Earth or in microgravity in Space result in considerable loss of bone, muscle and force with downregulation of neuromuscular activity resulting in impaired performance control. The goal is to develop exercise prescriptions to maintain postural control in normal life, aging and rehabilitation on Earth as well as for an adequate human performance management in Space.
Stress of either psychological or physical nature can activate and/or paralyse humans’ innate and adaptive immunity. However, adequate immunity is crucial to the maintenance of health on earth and in space. During space flight, human physiology and health are challenged by complex environmental stressors which might be at their most pronounced during lunar or interplanetary missions. While previous publications have addressed the physiological changes that occur during space flight, this book goes further, by adopting an interdisciplinary approach to analyze the complex interaction of living conditions in space, the immune system, and astronauts’ health. It is explained how such analysis of the consequences of stress for the immune system may help in preventing, diagnosing, and counteracting immune-related alterations in health on earth as well as in space
This book comprehensively describes the physiological changes and consequences that occur in humans during spaceflight. It specifically presents the adaptations of the cardiovascular and the respiratory system. Specific changes occurring after 10, 20 or more days in space are depicted. Furthermore, the book explains various effective countermeasures that are required upon return of the astronauts to Earth. The book is a must-have for all biomedical and clinical researchers in the field of cardiovascular biology and respiration, and a fascinating reading for all interested laymen, who wish to understand a bit more about spaceflight research and technology.
This volume of the series Springer Briefs in Space Life Sciences explains the physics and biology of radiation in space, defines various forms of cosmic radiation and their dosimetry, and presents a range of exposure scenarios. It also discusses the effects of radiation on human health and describes the molecular mechanisms of heavy charged particles’ deleterious effects in the body. Lastly, it discusses countermeasures and addresses the vital question: Are we ready for launch? Written for researchers in the space life sciences and space biomedicine, and for master’s students in biology, physics, and medicine, the book will also benefit all non-experts endeavouring to understand and enter space.
This monograph describes the findings of spaceflight research related to spatial orientation, sensorimotor coordination and mental function. Exposed to the microgravity conditions of spaceflight, the human experiences a variety of physiological and psychological problems, which are presented here. Recent findings of sensory motor research in space are depicted and their benefits for life on earth discussed. The examination of the vestibulo-oculomotor system for example has led to the development of innovative devices for the measurement of three-dimensional eye and head movements. These devices are currently employed in Earthbound applications such as eye laser surgery. The book is written for students and researchers in neurosciences, biomedical engineering, for neurologists and psychologists as well as for persons wanting to know more about biomedical research in space and its application on earth.
This volume of the Series SpringerBriefs in Space Life Sciences summarizes the newest finding in the field of mental health and physiological exercise in Space. Currently two major challenges are impacting human health in the western societies, one being a move towards a sedentary society, the second one being longevity. Both have a considerable impact on physical as well as mental health. Space life science research helps to understand the underlying degenerative physiological and neuro-psychological processes as living in space, living in microgravity can be regarded as a time lapse of the sedentary and aging human being. Translational research of the past years has shown that exercise can be regarded as a key factor to counteract physical and mental deconditioning in space, guaranteeing a holistic approach to health and a benefit to the socio-demographic changes of our society. The book is written for scientists in biomedicine, more specific in aging research, sports physiology and neurosciences.