You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains contributions by friends, colleagues and associates of John R Klauder on the occasion of his 60th birthday.Klauder's scientific work embraces vast territories from quantum theories to general relativity, optics and chaotic dynamics. A recurrent theme in his research is the role played by coherent states, in particular, in connection with path integral formulations of quantization. Perhaps at a less lofty level, this concept has had at least two spectacular applications: as a powerful investigative tool in quantum optics and as a precursor to wavelets. In a different vein, Klauder also attacked specific, non-renormalizable but exactly soluble, hard-core models in field theory, where he uncovered what has since been called the Klauder phenomenon.The contributors to this volume represent the special brand of mathematicians and physicists John Klauder helped define throughout his seminal career in the industrial and academic worlds.
This revised fourth edition provides an introduction to computer simulations in physics, cutting-edge algorithms, essential techniques, and petascale computing.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.
Describes global non-inertial frames in special and general relativity and provides a detailed description of mathematical methods.
This book provides an up-to-date understanding of the progress and current problems of the interplay of nonlocality in the classical theories of gravitation and quantum theory. These problems lie on the border between general relativity and quantum physics, including quantum gravity.
The book is based on the lectures delivered at the XCIII Session of the École de Physique des Houches, held in August, 2009. The aim of the event was to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations. The emphasis of the book is on the theoretical developments that have shaped the field in the last two decades and that have turned lattice gauge theory into a robust approach to the determination of low energy hadronic quantities and of fundamental parameters of the Standard Model. By way of introdu...
Proceedings of the NATO Advanced Study Institute, Funchal, Madeira, Portugal, August 6--19, 1993
This book describes the invariant nature of the relativistic quantum field theories utilizing the idea of interpolating the instant form dynamics and the light-front dynamics. While the light-front dynamics (LFD) based on the light-front time was proposed by Dirac in 1949, there has not yet been a salient review on the connection between the LFD and the instant form dynamics (IFD) based on the ordinary time. By reviewing the connection between LFD and IFD using the idea of interpolating the two different forms of the relativistic dynamics, one can learn the distinguished features of each form and how one may utilize those distinguished features in solving the complicated relativistic quantum...
The aim of this two-volume title is to give a comprehensive review of one hundred years of development of general relativity and its scientific influences. This unique title provides a broad introduction and review to the fascinating and profound subject of general relativity, its historical development, its important theoretical consequences, gravitational wave detection and applications to astrophysics and cosmology. The series focuses on five aspects of the theory: The first three topics are covered in Volume 1 and the remaining two are covered in Volume 2. While this is a two-volume title, it is designed so that each volume can be a standalone reference volume for the related topic.