You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.
Written by three leading experts in the field, this textbook describes and explains all aspects of the scanning probe microscopy. Emphasis is placed on the experimental design and procedures required to optimize the performance of the various methods. Scanning Probe Microscopy covers not only the physical principles behind scanning probe microscopy but also questions of instrumental designs, basic features of the different imaging modes, and recurring artifacts. The intention is to provide a general textbook for all types of classes that address scanning probe microscopy. Third year undergraduates and beyond should be able to use it for self-study or as textbook to accompany a course on probe microscopy. Furthermore, it will be valuable as reference book in any scanning probe microscopy laboratory. Novel applications and the latest important results are also presented, and the book closes with a look at the future prospects of scanning probe microscopy, also discussing related techniques in nanoscience. Ideally suited as an introduction for graduate students, the book will also serve as a valuable reference for practising researchers developing and using scanning probe techniques.
Advanced magnetic nanostructures is an emerging field in magnetism and nanotechnology, but the literature consists of a rich variety of original papers and parts of reviews and books whose scope is comparatively broad. This calls for a book with specific emphasis on state-of-the-art synthetic methods for fabricating, characterizing and theoretically modeling new magnetic nanostructures. This book is intended to provide a comprehensive overview of the present state of the field. Leading researchers world-wide have contributed a survey of their special ties to guide the reader through the exploding literature in nanomagnetic structures. The focus is on deliberately structured nanomagnets. It includes cluster assembled, self-organized and patterned thin films but excludes, for example, multilayered thin films. We target both industrial and academic researchers in magnetism and related areas, such as nanotechnology, materials science, and theoretical solid-state physics.
How could nanotechnology not perk the interest of any designer, engineer or architect? Exploring the intriguing new approaches to design that nanotechnologies offer, Nanomaterials, Nanotechnologies and Design is set against the sometimes fantastic sounding potential of this technology. Nanotechnology offers product engineers, designers, architects and consumers a vastly enhanced palette of materials and properties, ranging from the profound to the superficial. It is for engineering and design students and professionals who need to understand enough about the subject to apply it with real meaning to their own work. - World-renowned author team address the hot-topic of nanotechnology - The first book to address and explore the impacts and opportunities of nanotech for mainstream designers, engineers and architects - Full colour production and excellent design: guaranteed to appeal to everyone concerned with good design and the use of new materials
This new and completely updated edition features not only an accompanying CD-ROM, but also a new applications section, reflecting the many breakthroughs in the field over the last few years. It provides a complete set of computational models that describe the physical phenomena associated with scanning tunneling microscopy, atomic force microscopy, and related technologies. The result is both a solid professional reference and an advanced-level text, beginning with the basics and moving on to the latest techniques, experiments, and theory. In the section devoted to atomic force microscopy, the author describes the mechanical properties of cantilevers, atomic force microscope tip-sample inter...
Studies of High Temperature Superconductors, Volume 42 - Vortex Physics
Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology.
This book describes the development of innovative non-centralized optimization-based control schemes to solve economic dispatch problems of large-scale energy systems. Particularly, it focuses on communication and cooperation processes of local controllers, which are integral parts of such schemes. The economic dispatch problem, which is formulated as a convex optimization problem with edge‐based coupling constraints, is solved by using methodologies in distributed optimization over time-varying networks, together with distributed model predictive control, and system partitioning techniques. At first, the book describes two distributed optimization methods, which are iterative and require ...