You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edited book focuses on the contemporary developments and results in mathematical systems theory and control. It is a book in honor of Diederich Hinrichsen, for his fundamental contributions and achievements in the fields of linear systems theory and control theory and for his long term achievements in establishing mathematical systems theory in Germany. The book includes invited, peer-reviewed, authoritative expositions and surveys of these fields, presented by leading international researchers. A key theme of the book is the stability and robustness of linear and nonlinear systems using the concepts of stability radii and spectral value sets. Chapters survey recent advances in line...
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
System and Control theory is one of the most exciting areas of contemporary engineering mathematics. From the analysis of Watt's steam engine governor - which enabled the Industrial Revolution - to the design of controllers for consumer items, chemical plants and modern aircraft, the area has always drawn from a broad range of tools. It has provided many challenges and possibilities for interaction between engineering and established areas of 'pure' and 'applied' mathematics. This impressive volume collects a discussion of more than fifty open problems which touch upon a variety of subfields, including: chaotic observers, nonlinear local controlability, discrete event and hybrid systems, neural network learning, matrix inequalities, Lyapunov exponents, and many other issues. Proposed and explained by leading researchers, they are offered with the intention of generating further work, as well as inspiration for many other similar problems which may naturally arise from them. With extensive references, this book will be a useful reference source - as well as an excellent addendum to the textbooks in the area.
This monograph deals primarily with the prediction of vector valued stochastic processes that are either weakly stationary, or have weakly stationary increments, from finite segments of their past. The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process. The strategy is to identify these subspaces as vector valued de Branges spaces and then to express projections in terms of the reproducing kernels of these spaces and/or in terms of a generalized Fourier transform that is ob...
The past decade has witnessed a vigorous growth in activities toward the development of a variety of biomedical devices ranging from the simple A-V shunt to the complex artificial heart. Re search and development teams have been created comprising engi neers, material scientists and clinicians and, perhaps for the first time, such groups are collaboratively bringing their respec tive talents to bear on problems associated with defects in the human organism. These collaborations have resulted in a prolifera tion of new information and a rapid and continuing redefinition of the frontiers of progress. It was to keep pace with these changes, and provide an updated view of the state of the art th...
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the workshop.
This book is composed of three survey lecture courses and some twenty invited research papers presented to WOAT 2006 - the International Summer School and Workshop on Operator Algebras, Operator Theory and Applications, held at Lisbon in September 2006. The volume reflects recent developments in the area of operator algebras and their interaction with research fields in complex analysis and operator theory. The book is aimed at postgraduates and researchers in these fields.
Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.