You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a survey of recent developments in protein biochemistry. Top researchers in the field of protein biochemistry describe modern methods to address the challenges of protein purification by three-phase partitioning, and their folding and degradation by the functions of chaperones. The significance of peptide purity for fibril formation is addressed as well as the use of target oriented peptide arrays in palliative approaches in mucoviszidose. The design and application of protein epitope mimetics just as the structural resolving of the misfolding of various mutant proteins in serpinopathies enlarge our tools in resolving pathophysiological imbalances.
The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences.
First multi-year cumulation covers six years: 1965-70.
Extensively revised and updated, the new edition of the highly regarded Handbook of Proteolytic Enzymes is an essential reference for biochemists, biotechnologists and molecular biologists. Edited by world-renowned experts in the field, this comprehensive work provides detailed information on all known proteolytic enzymes to date. This two-volume set unveils new developments on proteolytic enzymes which are being investigatedin pharmaceutical research for such diseases as HIV, Hepatitis C, and the common cold. Volume I covers aspartic and metallo petidases while Volume II examines peptidases of cysteine, serine, threonine and unknown catalytic type. A CD-ROM accompanies the book containing f...
The dynamic field of flavin and flavoprotein biochemistry has seen rapid advancement in recent years. This comprehensive two volume set provides an overview of all aspects of contemporary research in this important class of enzymes. Topics treated include flavoproteins involved in energy generation, signal transduction and electron transfer (including respiration); oxygen activation by flavoproteins; the biology and biochemistry of complex flavoproteins; flavin and flavoprotein photochemistry/photophysics as well as biotechnological applications of flavoproteins. Recent developments in this field include new structures (including those of large membrane-integral electron transfer complexes containing FMN or FAD), elucidation of the role of flavoproteins in cell signalling pathways (including both phototaxis and the circadian cycle) and important new insights into the reaction mechanisms of flavin-containing enzymes. This volume focussing on oxidases, dehydrogenases and related systems is an essential reference for all researchers in biochemistry, chemistry, photochemistry and photophysics working on flavoenzymes.
Proceedings of an international conference held in Magdeburg, Germany, November 3-5, 1996
Of the many special roles played by proteolytic enzymes in immune reactions, this book addresses different aspects of membrane peptidases, signal transduction via ligation of membrane peptidases (especially of dipeptidyl peptidase IV/CD26 and aminopeptidase N/CD13), and regulation of membrane peptidases in vivo and in vitro. A number of newly discovered peptidases (including cathepsin F, W and X, carboxypeptidase X, attractin) are described, with special emphasis given to the role of peptidases in immune and defense reactions and in the pathogenesis of inflammatory and other diseases, including rheumatoid arthritis, pancreatitis, multiple sclerosis, Alzheimer's disease and tumours of various origins. The focus on the involvement of a selection of proteolytic enzymes in immune reactions and diseases is a unique feature of this multifaceted work , which combines biochemical, immunological and clinical research reports with literary reviews of the field.
The proteolytic enzymes have an essential function in all cells. Their activities are regulated by the rate of synthesis, activation of proenzymes and by the rate of synthesis of their inhibitors. They are synthesized in ribosomes like any other proteins and transported to various storage organelles or secreted from the cells and are activated in the pericellular space or in interstitium. Various cells and tissues have their characteristic enzyme patterns which serve their specific functions. Proteolytic enzymes take part and often have a regulatory role in numerous phases of cell function, e.g. cell division, migration, apoptotic as well as necrotic cell death etc. Diseases in which proteolysis has been subject of active research are e.g. cancer metastasis, viral infections, e.g. HIV, and Alzheimer's disease. They are also an essential part in any tissue remodelling, wound healing, throughout the kingdom of fauna and flora.
In recent years, research has shown the importance of peptides in neuroscience, immunology, and cell biology. Active research programs worldwide are now engaged in developing peptide-based drugs and vaccines using modification of natural peptides and proteins, design of artificial peptides and peptide mimetics, and screening of peptide and phage libraries. In this comprehensive book, the authors discuss peptide synthesis and application within the context of their increasing importance to the pharmaceutical industry. Peptides: Synthesis, Structures, and Applications explores the broad growth of information in modern peptide synthetic methods and the structure-activity relationships of synthe...
As genomics gives way to proteomics as the focus of scientific imagination in the biological sciences, more emphasis will be placed on the technology and interpretation of protein engineering experiments. Protein engineers will become increasingly sophisticated in the questions that they pose and demanding of the tools available to change protein structure. The optimal way to introduce non-coded amino acids for mechanistic studies, or site-specific reporter atoms for spectroscopic structural biology, is by protein semisynthesis. In Protein Engineering by Semisynthesis, the leading practitioners of the method cover their individual protein of expertise forming a comprehensive illustration of ...