You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Decision theory provides a formal framework for making logical choices in the face of uncertainty. Given a set of alternatives, a set of consequences, and a correspondence between those sets, decision theory offers conceptually simple procedures for choice. This book presents an overview of the fundamental concepts and outcomes of rational decision making under uncertainty, highlighting the implications for statistical practice. The authors have developed a series of self contained chapters focusing on bridging the gaps between the different fields that have contributed to rational decision making and presenting ideas in a unified framework and notation while respecting and highlighting the ...
This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More important...
In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners...
Artificial Intelligence continues to be one of the most exciting and fast-developing fields of computer science. This book presents the 177 long papers and 123 short papers accepted for ECAI 2016, the latest edition of the biennial European Conference on Artificial Intelligence, Europe’s premier venue for presenting scientific results in AI. The conference was held in The Hague, the Netherlands, from August 29 to September 2, 2016. ECAI 2016 also incorporated the conference on Prestigious Applications of Intelligent Systems (PAIS) 2016, and the Starting AI Researcher Symposium (STAIRS). The papers from PAIS are included in this volume; the papers from STAIRS are published in a separate volume in the Frontiers in Artificial Intelligence and Applications (FAIA) series. Organized by the European Association for Artificial Intelligence (EurAI) and the Benelux Association for Artificial Intelligence (BNVKI), the ECAI conference provides an opportunity for researchers to present and hear about the very best research in contemporary AI. This proceedings will be of interest to all those seeking an overview of the very latest innovations and developments in this field.
Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research. Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass...
Bayesian Statistics is a dynamic and fast-growing area of statistical research with wide-ranging and far-reaching applications across science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of techniques and application areas.
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics