You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic–Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C–C Main Chain from One Carbon Unit By E. Ihara
With contributions by numerous experts
The rapidly-developing field of confined polymers is reviewed in this volume. Special emphasis is given to polymer aspects of this interdisciplinary problem. Taken together, the contributions offer ample evidence of how the field of polymer science continues to evolve with the passage of time. The topics revolve around the tendency of surfaces to impede chain relaxation and to stimulate new sorts of chain organization. These have been implicated in a variety of spectacular phenomena. Here is a listing of authors and affiliations: K. Binder (Johannes Gutenberg-Universität Mainz, Germany); P.-G. de Gennes (College de France, France); E.P. Giannelis, R. Krishnamoorti, and E. Manias (Cornell University and University of Houston, USA); G.S. Grest (Exxon Research and Engineering Co., USA); L. Leger, E. Raphael, and H. Hervet (College de France, France); S.-Q. Wang (Case Western Reserve University, USA).
A renewed interest in aliphatic polyesters has resulted in developing materials important in the biomedical and ecological fields. Mainly materials such as PLA and PCL homopolymers have so far been used in most applications. There are many other monomers which can be used. Different molecular structures give a wider range of physical properties as well as the possibility of regulating the degradation rate. By using different types of initiators and catalysts, ring-opening polymerization of lactones and lactides provides macromolecules with advanced molecular architectures. In the future, new degradable polymers should be able to participate in the metabolism of nature. Some examples of novel polymers with inherent environmentally favorable properties such as renewability and degradability and a series of interesting monomers found in the metabolisms and cycles of nature are given.
With contributions by numerouis experts
Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization, by A. Pich and W. Richtering * Hydrogels in Miniemulsions, by K. Landfester and A. Musyanovych * Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers, by K. Albrecht, M. Moeller, and J. Groll * Synthesis of Microgels by Radiation Methods, by F. Krahl and K.-F. Arndt * Microgels as Nanoreactors: Applications in Catalysis, by N. Welsch, M.s Ballauff, and Y. Lu
-Polyelectrolyte Stars and Cylindrical Brushes By Y. Xu, F. Plamper, M. Ballauff, and A. H. E. Müller -Various Aspects of the Interfacial Self-Assembly of Nanoparticles By N. Popp, S. Kutuzov, A. Böker -Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses By H. Audorff, K. Kreger, R. Walker, D. Haarer, L. Kador, and H.-W. Schmidt -Donor–Acceptor Block Copolymers with Nanoscale Morphology for Photovoltaic Applications By M. Sommer, S. Huettner, and M. Thelakkat -Recent Advances in the Improvement of Polymer Electret Films By D. P. Erhard, D. Lovera, C. von Salis-Soglio, R. Giesa, V. Altstädt, and H.-W. Schmidt