You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We dedicate this book to professor C. T. de Wit (1924 - 1993) who initiated Production Ecology as a school of thought at the Wageningen Agricultural Univer sity (see Rabbinge et at. , 1990). To acknowledge the leading role of C. T. de Wit, a recently formed graduate school at this university in Production Ecology was named after him. Production Ecology is the study of ecological processes, with special attention to flows of energy and matter as factors that determine the productivity of ecological systems. Agro-ecosystems are a special case of ecosystems which are much better suited for the productivity approach than natural ecosystems are. This is the reason for the strong role of agricultu...
Theory of modelling and systems management; Basic techniques of dynamic simulation; Population development in time and space; Coupling of crop growth and pests, diseases and weeds; Decision making and management.
None
The symposium In the next decades, agriculture will have to cope with an ever-increasing demand for food and raw basic materials on the one hand, and with the necessity to use resources without further degrading or exhausting the environment on the other hand, and all this within a dynamic framework of social and economic conditions. Intensification, sustainability, optimizing scarce resources, and climate change are among the key issues. Organized thinking about future farming requires forecasting of consequences of alternative ways to farm and to develop agriculture. The complexity of the problems calls for a systematic approach in which many disciplines are integrated. Systems thinking an...
General introduction; Empirical models for crop-weed competition; Eco-physiological models for crop-weed competition; Mechanisms of competition for light; Mechanisms of competition for water; Mechanisms of competition for nitrogen; Eco-physiological characterization of the species; Understanding crop-weed interaction in field situation; The impact of environmental and genetic factors; Practical applications.
GECROS is presented here in an open style, rather than as a ‘black-box’.
Opening remarks; Biological stresses; Cropping systems; Deterministic models; Recommendations.
A greenhouse provides an essential means of livelihood to its owner and must be economically practical for the particular climate in which it stands. Greenhouses: Advanced Technology for Protected Horticulture addresses the major environmental factors of light, temperature, water, nutrition, and carbon dioxide, and features extensive discussions of greenhouse types, construction, and climate control. The book highlights technology such as hydroponics, computer control of environments, and advanced mathematical procedures for environmental optimization. Greenhouses: Advanced Technology for Protected Horticulture is the definitive text/reference for the science of greenhouse engineering and ma...
Learning mathematical modeling need not be difficult. Unlike other books, this book not only lists the equations one-by-one, but explains in detail how they are each derived, used, and finally assembled into a computer program for model simulations. This book shows how mathematics is applied in agriculture, in particular to modeling the growth and yield of a generic crop. Topics covered are agriculture meteorology, solar radiation interception and absorption, evapotranspiration, energy and soil water balance, soil water flow, photosynthesis, respiration, and crop growth development. Rather than covering many modeling approaches but in superficial detail, this book selects one or two widely-used modeling approaches and discusses about them in depth. Principles learned from this book equips readers when they encounter other modeling approaches or when they develop their own crop models.