You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hsio-Fu Tuan is a Chinese mathematician who has made important contributions to the theories of both finite groups and Lie groups. He has also had a great influence on the development of algebra, and particularly group theory in China. The present volume consists of a collection of essays on various aspects of group theory written by some of his former students and colleagues in honour of his 80th birthday. The papers contain the main general results, as well as recent ones, on certain topics within this discipline. The chief editor, Zhe-Xian Wan, is a leading algebraist in China.
The AMS History of Mathematics series is one of the most popular items for bookstore sales. These books feature colorful, attractive covers that are perfect for face out displays. The topics will appeal to a broad audience in the mathematical and scientific communities.
Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
The international symposium on number theory and analysis in memory of the late famous Chinese mathematician Professor Hua Loo Keng took place in August 1988 at the Tsinghua University in Beijing. Excellent survey lectures and expositions of the most recent results in number theory and analysis were given by experts from all over the world. While Volume I focuses on number theory, Volume II deals mainly with several complex variables, differential geometry and classical complex analysis. Both volumes also include two fascinating accounts of Professor Hua Loo Keng's life and work by Professor S. Iyanaga and Professor Wang Yuan. Highlights in Volume I: D.A. Hejhal: Eigenvalues of the Laplacian...
During his lifetime, L. K. Hua played a leading role in and exerted a great influence upon the development in China of modern mathematics, both pure and applied. His mathematical career began in 1931 at Tsinghua University where he continued as a professor for many years. Hua made many significant contributions to number theory, algebra, geometry, complex analysis, numerical analysis, and operations research. In particular, he initiated the study of classical groups in China and developed new matrix methods which, as applied by him as well as his followers, were instrumental in the successful attack of many problems. To honor his memory, a joint China-U.S. conference on Classical Groups and Related Topics was held at Tsinghua University in Beijing in May 1987. This volume represents the proceedings of that conference and contains both survey articles and research papers focusing on classical groups and closely related topics.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixt...
This book is the first monograph to study the processes of establishing and reconstructing the academician system, and the landmark events in the history of science and technology in 20th century China. It also provides new insights to help us understand the process of scientific institutionalization in modern China. Drawing on detailed archive records, it discusses the process of the establishment of the Academia Sinica's academician system in the Republic of China, as well as the unique and tortuous transformation process from members of the Academic Divisions(学部委员)to academicians of the Chinese Academy of Sciences(中国科学院)in the People's Republic of China. These play an important part of China's modernization process, and reflect scientific institutionalization in China. The book also highlights the fact that under the leadership of the government, the academic elite became participants in the construction of national academic system after the founding of the People's Republic of China.
This book is the fifth and final volume of Raoul Bott’s Collected Papers. It collects all of Bott’s published articles since 1991 as well as some articles published earlier but missing in the earlier volumes. The volume also contains interviews with Raoul Bott, several of his previously unpublished speeches, commentaries by his collaborators such as Alberto Cattaneo and Jonathan Weitsman on their joint articles with Bott, Michael Atiyah’s obituary of Raoul Bott, Loring Tu’s authorized biography of Raoul Bott, and reminiscences of Raoul Bott by his friends, students, colleagues, and collaborators, among them Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring Tu. Th...
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.