You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is dedicated to the memory of Israel Gohberg (1928–2009) – one of the great mathematicians of our time – who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg’s mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
Advanced Linear Algebra features a student-friendly approach to the theory of linear algebra. The author’s emphasis on vector spaces over general fields, with corresponding current applications, sets the book apart. He focuses on finite fields and complex numbers, and discusses matrix algebra over these fields. The text then proceeds to cover vector spaces in depth. Also discussed are standard topics in linear algebra including linear transformations, Jordan canonical form, inner product spaces, spectral theory, and, as supplementary topics, dual spaces, quotient spaces, and tensor products. Written in clear and concise language, the text sticks to the development of linear algebra without excessively addressing applications. A unique chapter on "How to Use Linear Algebra" is offered after the theory is presented. In addition, students are given pointers on how to start a research project. The proofs are clear and complete and the exercises are well designed. In addition, full solutions are included for almost all exercises.
This volume contains the proceedings of the International Workshop on Operator Theory and Applications held at the University of Algarve in Faro, Portugal, September 12-15, in the year 2000. The main topics of the conference were !> Factorization Theory; !> Factorization and Integrable Systems; !> Operator Theoretical Methods in Diffraction Theory; !> Algebraic Techniques in Operator Theory; !> Applications to Mathematical Physics and Related Topics. A total of 94 colleagues from 21 countries participated in the conference. The major part of participants came from Portugal (32), Germany (17), Israel (6), Mexico (6), the Netherlands (5), USA (4) and Austria (4). The others were from Ukraine, Venezuela (3 each), Spain, Sweden (2 each), Algeria, Australia, Belorussia, France, Georgia, Italy, Japan, Kuwait, Russia and Turkey (one of each country). It was the 12th meeting in the framework of the IWOTA conferences which started in 1981 on an initiative of Professors 1. Gohberg (Tel Aviv) and J. W. Helton (San Diego). Up to now, it was the largest conference in the field of Operator Theory in Portugal.
R. S. PHILLIPS I am very gratified to have been asked to give this introductory talk for our honoured guest, Israel Gohberg. I should like to begin by spending a few minutes talking shop. One of the great tragedies of being a mathematician is that your papers are read so seldom. On the average ten people will read the introduction to a paper and perhaps two of these will actually study the paper. It's difficult to know how to deal with this problem. One strategy which will at least get you one more reader, is to collaborate with someone. I think Israel early on caught on to this, and I imagine that by this time most of the analysts in the world have collaborated with him. He continues relentlessly in this pursuit; he visits his neighbour Harry Dym at the Weizmann Institute regularly, he spends several months a year in Amsterdam working with Rien Kaashoek, several weeks in Maryland with Seymour Goldberg, a couple of weeks here in Calgary with Peter Lancaster, and on the rare occasions when he is in Tel Aviv, he takes care of his many students.
This volume comprises the proceedings of the International Workshop on Operator Theory and Its Applications held at the University of Connecticut in July 2005.
This volume presents a set of papers based on the proceedings of the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The workshop focused on the fusion or integration of sensor information to achieve the optimum interpretation of a scene. The papers cover a broad range of topics, including principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multisensor fusion, and applications of multisensor fusion. The authors have documented their own research and, in so doing,have presented the state of the art in the field. Each author is a recognized leader in his or her area in the academic, governmental, or industrial research community. Several contributors present novel points of view on the integration of information. The book gives a representative picture of current progress in multisensor fusion for computer vision among the leading research groups in Europe and North America.
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of ...
R. S. PHILLIPS I am very gratified to have been asked to give this introductory talk for our honoured guest, Israel Gohberg. I should like to begin by spending a few minutes talking shop. One of the great tragedies of being a mathematician is that your papers are read so seldom. On the average ten people will read the introduction to a paper and perhaps two of these will actually study the paper. It's difficult to know how to deal with this problem. One strategy which will at least get you one more reader, is to collaborate with someone. I think Israel early on caught on to this, and I imagine that by this time most of the analysts in the world have collaborated with him. He continues relentlessly in this pursuit; he visits his neighbour Harry Dym at the Weizmann Institute regularly, he spends several months a year in Amsterdam working with Rien Kaashoek, several weeks in Maryland with Seymour Goldberg, a couple of weeks here in Calgary with Peter Lancaster, and on the rare occasions when he is in Tel Aviv, he takes care of his many students.
A collection of 25 papers dedicated to Israel Gohberg, an outstanding leader in operator theory. Also containing a review of his contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x}, D)=\sum_{0\, \leq\, \left s\right \, \leq\,2m}a_{s} (\mathbf{x})D DEGREES{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C DEGREES{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E} DEGREES{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimensio