You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Computational astrophysics is a new and quickly growing discipline. In this book the authors outline the fundamentals for computational astrophysics, focusing on the use of the Astronomical Multipurpose Software Environment (AMUSE), which is a general-purpose simulation environment in astrophysics written in Python. AMUSE allows you to combine existing solvers to build new applications that can be combined again to study gradually more complex situations. This enables the growth of multi-physics and multi-scale application software in a hierarchical fashion, testing each intermediate step as the complexity of the software continues to increase. All examples in the book are associated with codes that run on a simple laptop or workstation. All figures are reproducible with a simple script, and all scripts are available online to be downloaded and run accordingly."--Source : résumé de l'éditeur.
This book begins with an examination of the numbers of women in physics in English-speaking countries, moving on to examine factors that affect girls and their decision to continue in science, right through to education and on into the problems that women in physics careers face. Looking at all of these topics with one eye on the progress that the field has made in the past few years, and another on those things that we have yet to address, the book surveys the most current research as it tries to identify strategies and topics that have significant impact on issues that women have in the field.
This book introduces nuclear data to the newcomer and provides a basic introduction to the role of nuclear data as the foundation of nuclear structure study. The material presented assumes no prior knowledge of the content or language used in communicating details of nuclear data. The approach builds on basic concepts: from gross properties of nuclei, through properties of quantum excited states, to simple model perspectives. The role of spectroscopy is thoroughly integrated, across all types of measurements, with many illustrations, to show how properties of nuclei are deduced. The basic technical methods needed for the deduction of nuclear properties from raw data are presented in animated figures, video tutorials, and accompanying PowerPointa presentations. The level of presentation provides access for students and researchers in applied areas that use nuclear data, e.g., medical applications and nuclear security. Overall, the book focuses on pedagogy and accessibility to the data aspect of nuclear physics. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.
Experimental Particle Physics is written for advanced undergraduate or beginning postgraduate students starting data analysis in experimental particle physics at the Large Hadron Collider (LHC) at CERN. Assuming only a basic knowledge of quantum mechanics and special relativity, the text reviews the current state of affairs in particle physics, before comprehensively introducing all the ingredients that go into an analysis.
"Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject."--Prové de l'editor.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination and into the pragmatic spheres of commerce and the military. With the growing population of engineers in need of a transparent, pragmatic, and direct introduction to QE and its applications, this book, the first of its kind, focuses on the practical mathematical tools necessary to handle QE and its requirements to design optical configurations for QE-based systems. Specific applications include sat...
Knowledge of scientific principles is also mandated as a result of a need to understand best and safest practice, especially in the use of ionising radiation where legislation, guidance and risk all form part of a medical specialists' pressures at work. It is no surprise therefore that radiologists are obliged to study and pass physics exams. Such exams can present a considerable challenge and the authors of this work recognise and sympathise with that challenge and have created a volume which that is intended to be an educational resource and not just a pre-exam 'crammer.' Both authors have considerable experience in teaching, supporting and examining in medical science and have developed an awareness of where those sitting professional exams have traditionally struggled. This text is a distillation of that experience.
This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.
Energy from Nuclear Fusion explores a range of issues relevant to the use of nuclear fusion as a potential solution to the energy problem. Prof. Dunlap assesses the viability of nuclear fusion as a component of our future energy mix, contextualising his discussion of nuclear fusion as an energy source through a comprehensive review of our current and future energy requirements. The book also considers alternatives to nuclear fusion alongside issues pertaining to the commercial application of nuclear-based solutions. Intended for upper-level undergraduate science and engineering students, as well as non-specialist graduate students and professionals looking for a scientifically-based overview...