You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advances in Botanical Research
Several previous Advanced Study Institutes have concentrated on the techniques of light scattering, while the biological appli cations were not fully explored. Many of the techniques are now standardised and are being applied to a wide range of biologically significant problems both in vivo and in vitro. While laser light scattering methods are superior to conventional methods, there was a general reluctance among biologists to adopt them because of the complexity of the physical techniques and the accompanying mathe matical analysis. Consequently valuable opportunities for advancing the understanding of the biological problems were being missed. Advances in the design and commercial availab...
Historically, science has developed by reducing complex situations to simple ones, analyzing the components and synthesizing the original situation. While this 'reductionist' approach has been extremely successful, there are phenomena of such complexity that one cannot simplify them without eliminating the problem itself. Recently, attention has turned to such problems in a wide variety of fields. This is in part due to the development of fractal geometry. Fractal geometry provides the mathematical tools for handling complexity. The present volume is a collection of papers that deal with the application of fractals in both traditional scientific disciplines and in applied fields. This volume shows the advance of our understanding of complex phenomena across a spectrum of disciplines. While these diverse fields work on very different problems, fractals provide a unifying formalism for approaching these problems.
Offers an overview of recent advances in multiphase polymeric materials, ranging from theoretical aspects of polymer miscibility and phase separation kinetics to bulk, surface and interface properties in polymeric materials. This work considers the possibility of a nondestructive methodology to investigative multiphase polymers based mainly on a scattering technique that is sensitive to changes in the phase behaviour of multicomponent polymer systems.
Provides a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
Integrating fundamental research with the technical applications of this rapidly evolving field, Structure and Functional Properties of Colloidal Systems clearly presents the connections between structure and functional aspects in colloid and interface science. It explores the physical fundamentals of colloid science, new developments of synthesis
Because of the rapid increase in commercially available Fouriertransform infrared spectrometers and computers over the past tenyears, it has now become feasible to use IR spectrometry tocharacterize very thin films at extended interfaces. At the sametime, interest in thin films has grown tremendously because ofapplications in microelectronics, sensors, catalysis, andnanotechnology. The Handbook of Infrared Spectroscopy of UltrathinFilms provides a practical guide to experimental methods,up-to-date theory, and considerable reference data, critical forscientists who want to measure and interpret IR spectra ofultrathin films. This authoritative volume also: Offers informationneeded to effective...
The central theme, which threads through the entire book, concerns computational modeling methods for water. Modeling results for pure liquid water, water near ions, water at interfaces, water in biological microsystems, and water under other types of perturbations such as laser fields are described. Connections are made throughout the book with statistical mechanical theoretical methods on the one hand and with experimental data on the other. The book is expected to be useful not only for theorists and computer analysts interested in the physical, chemical, biological and geophysical aspects of water, but also for experimentalists in these fields.
In the twenty years since their inception, modern dynamic light-scattering techniques have become increasingly sophisticated, and their applications have grown exceedingly diverse. Applications of the techniques to problems in physics, chemistry, biology, medicine, and fluid mechanics have prolifer ated. It is probably no longer possible for one or two authors to write a monograph to cover in depth the advances in scattering techniques and the main areas in which they have made a major impact. This volume, which we expect to be the first of aseries, presents reviews of selected specialized areas by renowned experts. It makes no attempt to be comprehensive; it emphasizes a body of related app...