You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
None
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, this comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems, and the singular value decomposition. The author, who helped design the widely-used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, including recommendations of which algorithms to use in a variety of practical situations. Algorithms are derived in a mathematically illuminating way, including condition numbers and error bounds. Direct and iterative algorithms, suitable for dense and sparse matri...
A comprehensive and accessible guide to the calculation of eigenvalues of matrices, ideal for undergraduates, or researchers/engineers in industry.
Based on a symposium on lasers, molecules, and methods held at the Los Alamos Center for Nonlinear Studies held in July 1986. Contributors present recent advances in theoretical and experimental research on a diversity of dynamical and optical phenomena resulting from the interactions of laser beams with molecules. They describe the predictive results of sophisticated mathematical models, the equipment involved in experiments, and reveal new insights into molecular structure and behavior.
The papers in this volume emphasize the numerical aspects of three main areas: optimization, linear algebra and partial differential equations. Held in January, 1989, in Yucatan, Mexico, the workshop was organized by the Institute for Research in Applied Mathematics of the National University of Mexico in collaboration with the mathematical Sciences Department at Rice University.