You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The unifying thread of this book is the topic of Weighted Norm Inequalities, but many other related topics are covered, including Hardy spaces, singular integrals, maximal operators, functions of bounded mean oscillation and vector valued inequalities. The emphasis is placed on basic ideas; problems are first treated in a simple context and only afterwards are further results examined.
Wavelet theory had its origin in quantum field theory, signal analysis, and function space theory. In these areas wavelet-like algorithms replace the classical Fourier-type expansion of a function. This unique new book is an excellent introduction to the basic properties of wavelets, from background math to powerful applications. The authors provide elementary methods for constructing wavelets, and illustrate several new classes of wavelets. The text begins with a description of local sine and cosine bases that have been shown to be very effective in applications. Very little mathematical background is needed to follow this material. A complete treatment of band-limited wavelets follows. The...
Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analy...
This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.
The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.
This volume consists of the lecture notes of the Seminar on Mathematical Analysis which was held at the Universities of Malaga and Seville, Septembre 2002-February 2003.
A great many of the objects investigated in mathematics turn out to be groups. These include familiar number systems, such as the integers, the rational numbers, the real numbers, and the complex numbers under addition, as well as the non-zero rationals, reals, and complex numbers, under multiplication. Another important example is given by non-singular matrices under multiplication, and more generally, invertible functions under composition. Group theory allows for the properties of these systems and many others to be investigated in a more general setting, and its results are widely applicable. Group theory is also a rich source of theorems in its own right. Groups underlie many other algebraic structures such as fields and vector spaces. They are also important tools for studying symmetry in all its forms; the principle that the symmetries of any object form a group is foundational for much mathematics. For these reasons, group theory is an important area in modern mathematics, and also one with many applications to mathematical physics. This book presents the latest research in the field.
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop “Analysis, Operator Theory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.
"Volume includes English translation of ten expository articles published in the Japanese journal Sugaku."