You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A cutting-edge collection of readily reproducible techniques for the isolation, culture, and study of activation and signaling in human mast cells. These methods take advantage of the latest advances in molecular biology, technology, and information science. They include methods for the identification of mast cells, the development of mast cells in vitro, the study of mast cell signaling and gene expression, and the measurement of mast cell expression of inflammatory mediators. Additional chapters cover methods for studying mast cell interactions with other cell types (endothelial cells, fibroblasts, and B cells), the roles of mast cells in host defense, and mast cell apoptosis.
The diverse applications in this volume range from the study of allosteric regulation of ion channel activity using a classic mutagenesis approach, to the study of channel subunit stoichiometry using a novel biophysical approach based on fluorescence resonance energy transfer. Highlights include methods for heterologous expression of ion channels in cells, for determining channel structure-function, and for studying channel regulation.
A diverse collection of state-of-the-art methods for the microscopic imaging of cells and molecules. The authors cover a wide spectrum of complimentary techniques, including such methods as fluorescence microscopy, electron microscopy, atomic force microscopy, and laser scanning cytometry. Additional readily reproducible protocols on confocal scanning laser microscopy, quantitative computer-assisted image analysis, laser-capture microdissection, microarray image scanning, near-field scanning optical microscopy, and reflection contrast microscopy round out this eclectic collection of cutting-edge imaging techniques now available. The authors also discuss preparative methods for particles and cells by transmission electron microscopy.
Expert researchers who have developed and applied significant new assays describe in step-by-step detail a variety of methods for measuring a broad variety of hormones, related peptides, and synthetic steroids in various biological fluids. The hormones measured range from glucocorticoids in biological fluids, urinary steroids, aldosterone in blood, and plasma renin activity, to gut hormones in plasma, melatonin, prolactin, 6-sulfatoxymelatonin, and androgens in blood, saliva, and hair. The emphasis is on noncommercial assays so that investigators can set up novel methods suited to their special needs. Commercial assays are also described for comparative purposes. Tutorials on radioimmunoassay, gas chromatography-mass spectrometry, high-performance liquid chromatography, and PCR techniques help the reader to choose the best method for his or her purpose.
In this refreshingly integrated account, the author reviews reproductive function in humans, wild and domestic mammals, highlighting the loci suitable for manipulation. Controlling Reproduction is a practical comparative text which will be of interest to anyone concerned with mammalian reproduction.
The field of bacterial diagnostics has seen unprecedented advances in recent years. The increased need for accurate detection and identification of bacteria in human, animal, food, and environmental samples has fueled the development of new techniques. The field has seen extensive research aided by the information from bacterial genome sequencing projects. Although traditional methods of bacterial detection and identification remain in use in laboratories around the world, there is now a growing trend toward the use of nucleic ac- based diagnostics and alternative biochemically and immunologically based formats. The ultimate goal of all diagnostic tests is the accurate detection, identification, or typing of microorganisms in samples of interest. Although the resulting information is of obvious use in the areas of patient management, animal health, and quality control, it is also of use in monitoring routes of infection and outlining strategies for infection control. There is, therefore, a need to ensure that the information being provided is of the highest standard and that any new technique is capable of delivering this.
Leading clinicians and scientists in solid organ transplantation review the current status of the field and describe cutting-edge techniques for detecting the immune response to the allografted organ. The authors present the latest techniques for HLA typing, detecting HLA antibodies, and monitoring T-cell response, and examine more specialized methods utilizing proteomics, laser dissection microscopy, and real-time polymerase chain reaction. The area of tolerance induction and reprogramming of the immune system is also covered, along with a discussion of up-to-date methods of organ preservation, of today's optimal immunosuppressive drug regimens, as well as the difficulty of mimicking chronic rejection in experimental models. Introductory chapters provide a theoretical update on current practices in renal, liver, islet, and lung transplantation and on the pathways of antigen presentation and chronic rejection.
The first edition of this book, published in 1999 and called DNA Repair Protocols: Eukaryotic Systems, brought together laboratory-based methods for studying DNA damage and repair in diverse eukaryotes: namely, two kinds of yeast, a nematode, a fruit fly, a toad, three different plants, and human and murine cells. This second edition of DNA Repair Protocols covers mammalian cells only and hence its new subtitle, Mammalian Systems. There are two reasons for this fresh emphasis, both of them pragmatic: to cater to the interests of what is now a largely mammalocentric DNA repair field, and to expedite editing and prod- tion of this volume. Although DNA Repair Protocols: Mammalian Systems is a s...
A wide-ranging collection of readily reproducible methods for performing nuclear reprogramming by nuclear transfer in several different species, by fusion through both chemical treatment and electrically shocking cells, and by in vivo treatment of cells with cell extracts. Several methods of monitoring nuclear reprogramming are also presented, including the use of transgenic markers, activation of telomerase as an ES-specific marker, light and electron microscopic observation of structural changes in the nucleus, and verification of surface marker expression and the differentiation potential of stem cells. Biochemical methods are provided for the examination of chromatin protein modifications, nucleosomal footprinting, transcription factor binding, and the study of DNA methylation changes both at the specific locus level and at the level of the whole nucleus.
Hands-on researchers review the principles behind successful miniaturization and describe the key techniques for miniaturizing large-scale biochemical and bioanalytical methods for microchip analysis. The authors cover not only the most popular methods for the fabrication of microchips (photolithography, laser ablation, and soft lithography), but also microfluidic techniques for such bioanalytical assays and bioprocesses as DNA analysis, PCR, immunoassays, and cell reactors. Highlights include PCR on a microchip, microscale cell culturing, and the study of cellular processes on a microchip. The protocols offer step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.