You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A cutting-edge collection of readily reproducible techniques for the isolation, culture, and study of activation and signaling in human mast cells. These methods take advantage of the latest advances in molecular biology, technology, and information science. They include methods for the identification of mast cells, the development of mast cells in vitro, the study of mast cell signaling and gene expression, and the measurement of mast cell expression of inflammatory mediators. Additional chapters cover methods for studying mast cell interactions with other cell types (endothelial cells, fibroblasts, and B cells), the roles of mast cells in host defense, and mast cell apoptosis.
The diverse applications in this volume range from the study of allosteric regulation of ion channel activity using a classic mutagenesis approach, to the study of channel subunit stoichiometry using a novel biophysical approach based on fluorescence resonance energy transfer. Highlights include methods for heterologous expression of ion channels in cells, for determining channel structure-function, and for studying channel regulation.
A diverse collection of state-of-the-art methods for the microscopic imaging of cells and molecules. The authors cover a wide spectrum of complimentary techniques, including such methods as fluorescence microscopy, electron microscopy, atomic force microscopy, and laser scanning cytometry. Additional readily reproducible protocols on confocal scanning laser microscopy, quantitative computer-assisted image analysis, laser-capture microdissection, microarray image scanning, near-field scanning optical microscopy, and reflection contrast microscopy round out this eclectic collection of cutting-edge imaging techniques now available. The authors also discuss preparative methods for particles and cells by transmission electron microscopy.
Chemical genomics is an exciting new field that aims to transform biolo- cal chemistry into a high-throughput industrialized process, much in the same way that molecular biology has been transformed by genomics. The inter- tion of small organic molecules with biological systems (mostly proteins) underpins drug discovery in the pharmaceutical and biotechnology industries, and therefore a volume of laboratory protocols that covers the key aspects of chemical genomics would be of use to biologists and chemists in these orga- zations. Academic scientists have been exploring the functions of proteins using small molecules as probes for many years and therefore would also b- efit from sharing idea...
The first edition of this book, published in 1999 and called DNA Repair Protocols: Eukaryotic Systems, brought together laboratory-based methods for studying DNA damage and repair in diverse eukaryotes: namely, two kinds of yeast, a nematode, a fruit fly, a toad, three different plants, and human and murine cells. This second edition of DNA Repair Protocols covers mammalian cells only and hence its new subtitle, Mammalian Systems. There are two reasons for this fresh emphasis, both of them pragmatic: to cater to the interests of what is now a largely mammalocentric DNA repair field, and to expedite editing and prod- tion of this volume. Although DNA Repair Protocols: Mammalian Systems is a s...
Research leaders in the PDE field describe new concepts and techniques for investigating the role of PDEs in orchestrating normal and pathophysiological responses. Presented in step-by-step detail, these readily reproducible methods allow the measurement of cyclic nucleotide variations in living cells, as well as their visualization in a spatio-temporal manner, the localization and characterization of their activities in tissues and living cells, and the assessment of targeted PDEs in creating specific tools and drugs.
Leading clinicians and scientists in solid organ transplantation review the current status of the field and describe cutting-edge techniques for detecting the immune response to the allografted organ. The authors present the latest techniques for HLA typing, detecting HLA antibodies, and monitoring T-cell response, and examine more specialized methods utilizing proteomics, laser dissection microscopy, and real-time polymerase chain reaction. The area of tolerance induction and reprogramming of the immune system is also covered, along with a discussion of up-to-date methods of organ preservation, of today's optimal immunosuppressive drug regimens, as well as the difficulty of mimicking chronic rejection in experimental models. Introductory chapters provide a theoretical update on current practices in renal, liver, islet, and lung transplantation and on the pathways of antigen presentation and chronic rejection.
The field of bacterial diagnostics has seen unprecedented advances in recent years. The increased need for accurate detection and identification of bacteria in human, animal, food, and environmental samples has fueled the development of new techniques. The field has seen extensive research aided by the information from bacterial genome sequencing projects. Although traditional methods of bacterial detection and identification remain in use in laboratories around the world, there is now a growing trend toward the use of nucleic ac- based diagnostics and alternative biochemically and immunologically based formats. The ultimate goal of all diagnostic tests is the accurate detection, identification, or typing of microorganisms in samples of interest. Although the resulting information is of obvious use in the areas of patient management, animal health, and quality control, it is also of use in monitoring routes of infection and outlining strategies for infection control. There is, therefore, a need to ensure that the information being provided is of the highest standard and that any new technique is capable of delivering this.
In this updated second edition, leading researchers apply molecular diagnostics to the many recent advances that have occurred in polymerase chain reaction( PCR)-based technologies. Highlights include real-time PCR, which allows the technique to be performed in a quantitative manner with improved sensitivity, robustness, and resilience to carryover contamination, mass spectrometric analysis of nucleic acids, and circulating cell-free nucleic acids in plasma. The authors apply these innovations to a broad spectrum of applications, including gene expression, methylation, trace molecule, gene dosage, and single cell analysis.
For this second edition of their much praised Cytochrome P450, the editors have collected accounts of the essential core techniques that use the latest methodologies for the investigation of P450s. Highlights include protocols for spectral analysis and purification of P450s, enzymatic assays of P450s and flavin-containing monooxygenases (FMOs), expression of P450s and FMOs in heterologous systems, and the production and use of antipeptide antibodies. Additional chapters contain readily reproducible techniques for the transfection of hepatocytes for gene regulation studies, P450 reporter gene assays, in situ hybridization, and analysis of genetic polymorphisms. Although the emphasis is on P450s of mammalian origin, many of the readily reproducible methods described are suitable for P450s from any source.