Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Applied Functional Analysis
  • Language: en
  • Pages: 633

Applied Functional Analysis

  • Type: Book
  • -
  • Published: 2017-12-01
  • -
  • Publisher: CRC Press

Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.

An Introduction to Mathematical Modeling
  • Language: en
  • Pages: 348

An Introduction to Mathematical Modeling

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and p...

An Introduction to the Mathematical Theory of Finite Elements
  • Language: en
  • Pages: 450

An Introduction to the Mathematical Theory of Finite Elements

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

A Posteriori Error Estimation in Finite Element Analysis
  • Language: en
  • Pages: 266

A Posteriori Error Estimation in Finite Element Analysis

An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this time...

Finite Elements of Nonlinear Continua
  • Language: en
  • Pages: 517

Finite Elements of Nonlinear Continua

Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view. The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical solution of the equations governing the discrete model. Though the theory and methods are sufficient...

Mechanics of Elastic Structures
  • Language: en
  • Pages: 488

Mechanics of Elastic Structures

None

Contact Problems in Elasticity
  • Language: en
  • Pages: 508

Contact Problems in Elasticity

  • Type: Book
  • -
  • Published: 1988-01-01
  • -
  • Publisher: SIAM

The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical meth...

Variational Methods in Theoretical Mechanics
  • Language: en
  • Pages: 313

Variational Methods in Theoretical Mechanics

This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed t...

Discontinuous Galerkin Methods
  • Language: en
  • Pages: 468

Discontinuous Galerkin Methods

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with eq...

Finite Element Exterior Calculus
  • Language: en
  • Pages: 126

Finite Element Exterior Calculus

  • Type: Book
  • -
  • Published: 2018-12-12
  • -
  • Publisher: SIAM

Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world?wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more?are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The...