You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
What makes some computers slow? Why do some digital systems operate reliably for years while others fail mysteriously every few hours? How can some systems dissipate kilowatts while others operate off batteries? These questions of speed, reliability, and power are all determined by the system-level electrical design of a digital system. Digital Systems Engineering presents a comprehensive treatment of these topics. It combines a rigorous development of the fundamental principles in each area with real-world examples of circuits and methods. The book not only serves as an undergraduate textbook, filling the gap between circuit design and logic design, but can also help practising digital designers keep pace with the speed and power of modern integrated circuits. The techniques described in this book, once used only in supercomputers, are essential to the correct and efficient operation of any type of digital system.
The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.
None
A description of both the theory and practice of physical measurements that use high-sensitivity moiré - principally moiré interferometry. The focus here is on the mechanics and micromechanics of materials and structural elements and the book includes new studies published for the first time. Diverse fields are addressed: advanced composite materials, thermal stresses, electronic packaging, fracture, metallurgy, time-dependence, strain gage calibration. All the methods can be applied for whole-field measurements on nearly and solid bodies. This reader-friendly book will serve engineers and scientists who are concerned with measurements of real phenomena, while also stimulating students to pursue the treasures of experimental analysis.
This book discusses solid dynamics with energy dissipation characteristics based on fundamental studies of friction, impact and fracture. Friction is one of the most significant physical phenomena in daily life, and has thus been widely studied since ancient times. The force of static friction is given by F = μN, where μ is the coefficient of friction and N is the contact force at the interface. However, many aspects of dynamic friction are still not well understood. This book presents fundamental studies on dynamic sliding friction based on experimental and model analyses, and demonstrates a number of findings. First, the sliding friction force in the dynamic case can be given by Fd = λA...
Includes Part 1, Number 2: Books and Pamphlets, Including Serials and Contributions to Periodicals July - December)