You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators.
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in pl...
The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.
By proposing and forming a mobile manipulator for modern multi-floor buildings, A Robotic Framework for the Mobile Manipulator: Theory and Application helps readers visualize an end-to-end workflow for making a robot system work in a targeted environment. From a product-oriented viewpoint, this book is considered as a bridge from theories to real products, in which robotic software modules and the robotic system integration are mainly concerned. In the end, readers will have an overview of how to build and integrate various single robotic modules to execute a list of designed tasks in the real world, as well as how to make a robot system work independently, without human interventions. With references and execution guidelines provided at the end of each chapter, the book will be a useful tool for developers and researchers looking to expand their knowledge about the robotics and the robotic software.
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
This book contains the papers of the 7th International Workshop on Medical and Service Robots (MESROB) that was planned to be held in Basel, Switzerland, in July 2020. Since the conference could not be held due to the worldwide Corona pandemic, the proceedings are published in this book and presentation of the accepted papers will be postponed to next year’s conference (MESROB 2021). The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, medical treatments, medical lasers, and surgical planning and navigation. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.
Mexican American Baseball in the San Fernando Valley explores the teams and players that dotted the valley landscape throughout the 20th century. In a time and place where Mexican Americans were closed off from many city recreation centers, neighborhoods formed their own teams. Baseball and softball reinforced community and regional ties, strengthened family bonds, instilled discipline and dedication that translated into future professional careers, provided women opportunities outside their traditional roles in the home, and fostered lifelong friendships. These photographs serve as a lens to both local sports history and Mexican American history.
The authors' of this book focus on the latest developments in robot kinematics and motion planning. The first chapter seeks to identify the governing rules implemented in the central nervous system (CNS) to solve redundant mapping problems from an experimental observation approach. The novelty of this chapter is in the obtained motion planning results for a constraint elbow joint during reaching movements. The second chapter focuses on the problems that exist in the two-norm and infinity-norm and solutions to these problems involving bi-criteria (BC) motion planning schemes of different joint-level vectors. In the third chapter, trajectory generation methods for the application of thermal spraying processes are introduced. In the fourth chapter, an investigation on the robot kinematics is proposed to find the rules of motion in an application case. The results demonstrate the motion behavior of each axis in the robot that consequently permits the identification of the motion problems in the trajectory. In the fifth chapter, kinematic properties of a new planar parallel manipulator is investigated by means of the theory of screws.
Roving vigilantes, fear-mongering politicians, hysterical pundits, and the looming shadow of a seven hundred-mile-long fence: the US–Mexican border is one of the most complex and dynamic areas on the planet today. Hyperborder provides the most nuanced portrait yet of this dynamic region. Author Fernando Romero presents a multidisciplinary perspective informed by interviews with numerous academics, researchers, and organizations. Provocatively designed in the style of other kinetic large-scale studies like Rem Koolhaas's Content and Bruce Mau’s Massive Change, Hyperborder is an exhaustively researched report from the front lines of the border debate.