You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Tracing its roots back to World War II, operations research (OR) has become a vital tool in military and defense strategy. The second edition of the Handbook of Military and Defense Operations Research highlights this evolution, showcasing how OR integrates with cutting-edge areas like artificial intelligence, cybersecurity, and big data analytics. This volume is more than a historical account; it is a practical guide. The volume features expert voices and offers insights into OR applications in modern security challenges. Readers will discover a blend of theory and real-world case studies, making it an essential resource for both newcomers and seasoned defense analysis professionals. Dive into this handbook to explore the rich, dynamic field of military and defense operations research, a discipline at the heart of global security and strategic decision-making. New to the second edition: Reorganized into a three-part structure Extensive revisions throughout Numerous new exercises, examples, and case studies Several new chapters
Online education has become a major component of higher education worldwide. In mathematics and statistics courses, there exists a number of challenges that are unique to the teaching and learning of mathematics and statistics in an online environment. These challenges are deeply connected to already existing difficulties related to math anxiety, conceptual understanding of mathematical ideas, communicating mathematically, and the appropriate use of technology. Teaching and Learning Mathematics Online bridges these issues by presenting meaningful and practical solutions for teaching mathematics and statistics online. It focuses on the problems observed by mathematics instructors currently wo...
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.
Scientific Computation has established itself as a stand-alone area of knowledge at the borderline between computer science and applied mathematics. Nonetheless, its interdisciplinary character cannot be denied: its methodologies are increasingly used in a wide variety of branches of science and engineering. A Gentle Introduction to Scientific Computing intends to serve a very broad audience of college students across a variety of disciplines. It aims to expose its readers to some of the basic tools and techniques used in computational science, with a view to helping them understand what happens "behind the scenes" when simple tools such as solving equations, plotting and interpolation are u...
This book covers using R for doing optimization, a key area of operations research, which has been applied to virtually every industry. The focus is on linear and mixed integer optimization. It uses an algebraic modeling approach for creating formulations that pairs naturally with an algebraic implementation in R. With the rapid rise of interest in data analytics, a data analytics platform is key. Working technology and business professionals need an awareness of the tools and language of data analysis. R reduces the barrier to entry for people to start using data analytics tools. Philosophically, the book emphasizes creating formulations before going into implementation. Algebraic represent...
Showcasing advanced research from over 30 expert sociologists, this dynamic Handbook explores a wide range of cutting-edge developments in scholarship on teaching and learning in sociology. It presents instructors with a comprehensive companion on how to achieve excellence in teaching, both in individual courses and across the undergraduate sociology curriculum.
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Introduction to Computational Engineering with MATLAB® aims to teach readers how to use MATLAB programming to solve numerical engineering problems. The book focuses on computational engineering with the objective of helping engineering students improve their numerical problem-solving skills. The book cuts a middle path between undergraduate texts that simply focus on programming and advanced mathematical texts that skip over foundational concepts, feature cryptic mathematical expressions, and do not provide sufficient support for novices. Although this book covers some advanced topics, readers do not need prior computer programming experience or an advanced mathematical background. Instead,...
This is an interactive e-book for students and instructors to introduce the concepts of mathematical computation and numerical analysis earlier in the curriculum. These courses are taught most commonly at the senior undergraduate level and students have little exposure to the topics taught prior. This is meant as a self-study module or as a supplement to instruction. There are many links to other resources included.
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.