You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Model-based Systems Architecting is a key tool for designing complex industrial systems. It is dedicated to the working systems architects, engineers and modelers, in order to help them master the complex integrated systems that they are dealing with in their day-to-day professional lives. It presents the CESAMES Systems Architecting Method (CESAM), a systems architecting and modeling framework which has been developed since 2003 in close interaction with many leading industrial companies, providing rigorous and unambiguous semantics for all classical systems architecture concepts. This approach is practically robust and easy-to-use: during the last decade, it was deployed in more than 2,000 real system development projects within the industry, and distributed to around 10,000 engineers around the globe.
The development of mechatronic and multidomain technological systems requires the dynamic behavior to be simulated before detailed CAD geometry is available. This book presents the fundamental concepts of multiphysics modeling with lumped parameters. The approach adopted in this book, based on examples, is to start from the physical concepts, move on to the models and their numerical implementation, and finish with their analysis. With this practical problem-solving approach, the reader will gain a deep understanding of multiphysics modeling of mechatronic or technological systems – mixing mechanical power transmissions, electrical circuits, heat transfer devices and electromechanical or fluid power actuators. Most of the book's examples are made using Modelica platforms, but they can easily be implemented in other 0D/1D multidomain physical system simulation environments such as Amesim, Simulink/Simscape, VHDL-AMS and so on.
The challenges of automating socio-technical systems are strongly linked to the strengths and limitations of technical and human resources, such as perceptual characteristics, cooperative capacities, job-sharing arrangements, modeling of human behavior and the contribution of innovative design approaches. Automation Challenges of Socio-technical Systems exposes the difficulties in implementing and sustaining symbiosis between humans and machines in both the short and long terms. Furthermore, it presents innovative solutions for achieving such symbiosis, drawing on skills from cognitive sciences, engineering sciences and the social sciences. It is aimed at researchers, academics and engineers in these fields.
Model-driven Development for Embedded Software: Application to Communications for Drone Swarm describes the principles of model-oriented design used in the aeronautical field, specifically for the UAV (Unmanned Aerial Vehicle). The book focuses on designing an embedded system for drones to carry out ad hoc communication within a drone fleet. In this context, an original methodology for rapid prototyping of embedded systems is presented. This approach saves time for the verification and formal validation phases, contributing to certification of the Unmanned Aerial System (UAS). The book also addresses the more traditional verification phases that must be performed to verify accuracy of the sy...
Complexity is not a new issue. In fact, in their day, William of Ockham and René Descartes proposed what can best be described as reductionist methods for dealing with it. Over the course of the twentieth century, a science of complexity has emerged in an ever-increasing number of fields (computer science, artificial intelligence, engineering, among others), and has now become an integral part of everyday life. As a result, everyone is confronted with increasingly complex situations that need to be understood and analyzed from a global perspective, to ensure the sustainability of our common future. Complexities 1 analyzes how complexity is understood and dealt with in the fields of cybersecurity, medicine, mathematics and information. This broad spectrum of disciplines shows that all fields of knowledge are challenged by complexity. The following volume, Complexities 2, examines the social sciences and humanities in relation to complexity.
Supply chains are now more essential than ever to the functioning of our society; however their environmental and societal impacts are often subject to well-founded criticism. Transforming a supply chain to make it more sustainable and responsible often requires a considerable amount of time and resources. The aim of this book is to present a number of simple best practices that can reduce these negative impacts and make supply chains more virtuous. Sustainable Supply Chain Management is a handbook for supply chain transformation. It explores the different facets of the supply chain, from product design or procurement to logistics operations management and performance. It offers a guide to actions for sustainable supply chain transformation, providing elements of the legal framework for possible actions and tools for measuring the performance that can be achieved.
This book constitutes the proceedings of the 12th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2017, held in Toulouse, France, in May 2017. The 12 full papers presented together with 2 demo papers in this volumewere carefully reviewed and selected from 16 submissions. The volume features contributions in the theory or practice of intelligent transportation systems (ITS) and communication technologies for: Vehicles on road: e.g. cars, tracks and buses; Air: e.g. aircraft and unmanned aerial vehicles; and Rail: e.g. trains, metros and trams.
As a result of its widespread implementation in economic and social structures, the network concept appears to be a paradigm of the contemporary world. The need for various services – transport, energy, consumption of manufacturing goods, provision of care, information and communication, etc. – draws users into interwoven networks which are meshes of material and immaterial flows. In this context, the user is a consumer of goods and services from industries and administrations, or they themselves are part of the organization (digital social networks). This book examines the invariants that unify networks in their diversity, as well as the specificities that differentiate them. It provides a reading grid that distinguishes a generic level where these systems find a common interpretation, and a specific level where appropriate analytical methods are used. Three case studies from different fields are presented to illustrate the purpose of the book in detail.
Inventing isn’t easy! After identifying and presenting the 12 "valleys of death", the real obstacles limiting the transition from an original idea to an innovative one, including the notion of socially responsible research, Knowledge Production Modes between Science and Applications 2 applies the concepts introduced in Volume 1. The book starts off with 3D printing, which has essentially broken through all barriers by offering remarkable advantages over existing mechanical technology. The situation is different for 4D printing and bio-printing. First of all, we need to tackle the complexity inherent in these processes, and move away from disciplinarity to find robust, applicable solutions, despite the obstacles. This is possible in niche areas, but currently, low profitability still limits their general applicability and the willingness of researchers to embrace interdisciplinary convergence....
Organization and Pedagogy of Complexity deals with real systems, their architecture, and speaks of those who design, develop and maintain them. After a summary of the architecture proposed by Daniel Krob, president of CESAMES in Paris, France, the book focuses on the sensor and effector equipment that routes and converts the system's information to the place where it is processed. These are the equivalent of the system's sense organs. It also analyzes the roots of complexity from the perspective of combinatorics: in real systems, everything comes down to cases and/or configurations being validated in greater or lesser numbers, but which must be kept under control. This book presents two case studies, giving a global vision of complexity. Finally, it presents a prospective approach that brings the engineering of artificial systems closer to that of biological systems, based on first-hand information provided by Philippe Kourilsky, Emeritus Professor at the Collège de France.