You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.
Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization. Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability “degree of belief”, showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion “relative frequency”. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples. Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.
This book aims to introduce the principle and design of various foundations, covering shallow foundations, mat foundations, earth retaining structures, excavations, pile foundations, and slope stability. Since the analysis and design of a foundation are based on the soil properties under short-term (undrained) or long-term (drained) conditions, the assessment of soil properties from the geotechnical site investigation and the concept of drained or undrained soil properties are discussed in the first two chapters. Foundation elements transfer various load combinations from the superstructure to the underlying soils or rocks. The load transfer mechanisms, vertical stress or earth pressure dist...
This volume highlights the latest advances and innovations in the field of soil mechanics and geotechnical engineering, as presented by leading international researchers and engineers at the 5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering (ZM), held in Nicosia, Northern Cyprus on June 30-July 2, 2022. It covers a diverse range of topics such as soil properties and characterization; shallow and deep foundations; soil improvement; excavations, support systems, earth-retaining structures and underground systems; earthquake geotechnical engineering; stability of slopes and landslides; fills and embankments; environmental preservation, water and energy; modelling and analyses in geotechnical engineering. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Communication of design risk within a transparent and rational framework is necessary in view of the increasing interest in code harmonization, public involvement in defining acceptable risk levels, and risk-sharing among client, consultant, insurer, and financier. Activities in code harmonization are particularly noteworthy. For the geotechnical engineering profession, there is added pressure for it to undergo a significant revamp because structural and geotechnical design are increasingly incompatible. The contributions in this volume tackle the important issues relating to new generation geotechnical design codes, in a bid to move geotechnical engineers forward together with the significant changes occurring at the global level.
While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics and statistical principles, the author discusses the principles of quantitative genetics, general statistical issues of QTL mapping, commonly used one-dimensional QTL mapping approaches, and multiple interval mapping methods. He then explains how to use a feature selection approach to tackle a QTL mapping problem with dense markers. The book also pro...
Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME): • TC304 Engineering Practice of Risk Assessment & Management • TC205 Safety and Serviceability in Geotechnical Design • TC212 Deep Foundations • TC302 Forensic Geotechnical Engineering Geotechnical Risk and Safety V covers seven themes: 1. Geotechnical Risk Management and Risk Communication 2. Variabi...
The ground is one of the most highly variable of engineering materials. It is therefore not surprising that geotechnical designs depend on local site conditions and local engineering experience. Engineering practices, relating to investigation and design methods site understanding and to safety levels acceptable to society, will therefore vary between different regions.The challenge in geotechnical engineering is to make use of worldwide geotechnical experience, established over many years, to aid in the development and harmonization of geotechnical design codes. Given the significant uncertainties involved, empiricism and engineering
Communication of risks within a transparent and accountable framework is essential in view of increasing mobility and the complexity of the modern society and the field of geotechnical engineering does not form an exception. As a result, modern risk assessment and management are required in all aspects of geotechnical issues, such as planning, design, construction of geotechnical structures, mitigation of geo-hazards, management of large construction projects, maintenance of structures and life-cycle cost evaluation. This volume discusses: 1. Evaluation and control of uncertainties through investigation, design and construction of geotechnical structures; 2. Performance-based specifications, reliability based design and limit state design of geotechnical structures, and design code developments; 3. Risk assessment and management of geo-hazards, such as landslides, earthquakes, debris flow, etc.; 4. Risk management issues concerning large geotechnical construction projects; 5. Repair and maintenance strategies of geotechnical structures. Intended for researchers and practitioners in geotechnical, geological, infrastructure and construction engineering.
Smart Geotechnics for Smart Societies contains the contributions presented at the 17th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (17th ARC, Astana, Kazakhstan, 14-18 August, 2023). The topics covered include: - Geomaterials for soil improvement - Tunneling and rock engineering - Slope, embankments and dams - Shallow and deep foundations - Soil dynamics and geotechnical earthquake engineering - Geoenvironmental engineering and frost geotechnics - Investigation of foundations of historical structures and monitoring - Offshore, harbor geotechnics and GeoEnergy - Megaprojects and transportation geotechnics Smart Geotechnics for Smart Societies will be of interest to academics and engineers interested or involved in geotechnical engineering.