You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to increasing codification and to code harmonization across national boundaries and material types. Already some codes of practice describe the principles and requirements for safety, serviceability, and durability of structures in reliability terms. This book presents practical computational methods in concrete steps that can be followed by practitioners and students. It also provides geotechnical examples illustrating reliability analysis and design. It aims to encourage geotechnical engineers to apply reliability-based design in a realistic context that recognises the complex variabilities in geomaterials and model uncertainties arising from a profession steeped in empiricism. By focusing on learning through computations and examples, this book serves as a valuable reference for engineers and a resource for students.
Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other g...
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to incre
Establishes Geotechnical Reliability as Fundamentally Distinct from Structural Reliability Reliability-based design is relatively well established in structural design. Its use is less mature in geotechnical design, but there is a steady progression towards reliability-based design as seen in the inclusion of a new Annex D on "Reliability of Geotechnical Structures" in the third edition of ISO 2394. Reliability-based design can be viewed as a simplified form of risk-based design where different consequences of failure are implicitly covered by the adoption of different target reliability indices. Explicit risk management methodologies are required for large geotechnical systems where soil an...
WIDTH: 405pt; BORDER-COLLAPSE: collapse border=0 cellSpacing=0 cellPadding=0 width=540> WIDTH: 405pt; mso-width-source: userset; mso-width-alt: 19748 width=540> HEIGHT: 31.5pt height=42> BORDER-BOTTOM: #f0f0f0; BORDER-LEFT: #f0f0f0; BACKGROUND-COLOR: transparent; WIDTH: 405pt; HEIGHT: 31.5pt; BORDER-TOP: #f0f0f0; BORDER-RIGHT: #f0f0f0 class=xl65 height=42 width=540>GSP 229 contains 54 papers on risk and uncertainty in foundation engineering presented in honor of Fred H. Kulhawy.
This publication contains the abstracts of 20 papers, the majority of which were presented at the International Workshop on Limit State Design in Geotechnical Engineering Practice (LSD2003). The complete contributions are available in the accompanying CD-ROM (special lecture not included). The topics covered include: performance-based and limit state design philosophies; issues arising from the implementation of limit state design codes; elaborations of “measured values”, “derived values” and “characteristic values”; reliability-based methodologies for analytical calibration of partial factors; and application of partial factors in FEM where highly nonlinear force-deformation behaviors may govern.
Now in its eighth edition, this bestselling text continues to blend clarity of explanation with depth of coverage to present students with the fundamental principles of soil mechanics. From the foundations of the subject through to its application in practice, Craig‘s Soil Mechanics provides an indispensable companion to undergraduate courses and b
Hydroinformatics addresses cross-disciplinary issues ranging from technological and sociological to more general environmental concerns, including an ethical perspective. It covers the application of information technology in the widest sense to problems of the aquatic environment. This two-volume publication contains about 250 high quality papers contributed by authors from over 50 countries. The proceedings present many exciting new findings in the emerging subjects, as well as their applications, such as: data mining, data assimilation, artificial neural networks, fuzzy logic, genetic algorithms and genetic programming, chaos theory and support vector machines, geographic information systems and virtual imaging, decision support and management systems, Internet-based technologies. This book provides an excellent reference to researchers, graduate students, practitioners, and all those interested in the field of hydroinformatics.
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms, and which is compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to increasing codification and to code harmonization across national boundaries and material types, and as it begins to conform to an umbrella framework predominantly established by structural engineers. Already some codes of practice describe the principles and requirem.
Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.