You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biodegradative Bacteria highlights the novel nature of bacterial cell functions in the field of biodegradation by putting them into three parts: (1) Genetic and genomic systems, (2) Degradative enzyme systems, and (3) Bacterial behavior in natural environmental systems. The first part of the book includes cell functions as degradative machinery, genome systems for effective degradation, and the evolution of degradative systems by mobile genetic elements. The second part deals with the structure, function, evolution, diversity, and application of degradative and related enzymes. The third part presents cell or genomic behaviors of biodegradative bacteria in natural ecosystems. Bacterial metab...
Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.
A useful guide to the fundamentals and applications of deep eutectic solvents Deep Eutectic Solvents contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio)catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano)materials preparation, biomass processing, and gas adsorption. The book is aimed at organic chemists, catalytic...
Because enzyme-catalyzed reactions exhibit higher enantioselectivity, regioselectivity, substrate specificity, and stability, they require mild conditions to react while prompting higher reaction efficiency and product yields. Biocatalysis in the Pharmaceutical and Biotechnology Industries examines the use of catalysts to produce fine chemic
Authored by one of the world's leading organic chemists, this authoritative reference provides an overview of basic strategies in directed evolution and introduces common gene mutagenesis, screening and selection methods. Throughout the text, emphasis is placed on methodology development to maximize efficiency, reliability and speed of the experiments and to provide guidelines for efficient protein engineering. Professor Reetz highlights the application of directed evolution experiments to address limitations in the field of enzyme selectivity, substrate scope, activity and robustness. He critically reviews recent developments and case studies, takes a look at future applications in the field of organic synthesis, and concludes with lessons learned from previous experiments.
The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.
Biosurfactants for a Sustainable Future Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology Biosurfactants for a Sustainable Future explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants. The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various...
This completely updated and expanded second edition stands as a comprehensive knowledgebase on both the fundamentals and applications of this important materials processing method. The diverse, international team of contributing authors of this reference clarify in extensive detail properties and applications of sol-gel science and technology as it pertains to the production of substances, active and non-active, including optical, electronic, chemical, sensor, bio- and structural materials. Essential to a wide range of manufacturing industries, the compilation divides into the three complementary sections: Sol-Gel Processing, devoted to general aspects of processing and recently developed ma...
The book highlights the biotechnological advancement in the area of food adulterants and outlines the current state of art technologies in the detection of food adulterants using omics and nanobiotechnology. The book provides insights to the most recent innovations, trends, concerns, and challenges in food adulterants. It identifies key research topics and practical applications of modern cutting-edge technologies employed for detection of food adulterants including: expansion of food adulterants market, potential toxicity of food adulterants and the prevention of food adulteration act, cutting-edge technology for food adulterants detection, and biosensing and nanobiosensing based detection of food adulterants. There is need for new resources in omics technologies for the application of new nanobiotechnology. Biotechnological Approaches in Food Adulterants provides an overview of the contributions of food safety and the most up-to-date advances in omics and nanobiotechnology approaches to a diverse audience from postgraduate students to researchers in biochemical engineering, biotechnology, food technologist, environmental technologists, and pharmaceutical professionals.