Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Fighter Aircraft Maneuver Limiting Using MPC: Theory and Application
  • Language: en
  • Pages: 204

Fighter Aircraft Maneuver Limiting Using MPC: Theory and Application

Flight control design for modern fighter aircraft is a challenging task. Aircraft are dynamical systems, which naturally contain a variety of constraints and nonlinearities such as, e.g., maximum permissible load factor, angle of attack and control surface deflections. Taking these limitations into account in the design of control systems is becoming increasingly important as the performance and complexity of the aircraft is constantly increasing. The aeronautical industry has traditionally applied feedforward, anti-windup or similar techniques and different ad hoc engineering solutions to handle constraints on the aircraft. However these approaches often rely on engineering experience and i...

Formal Verification of Control System Software
  • Language: en
  • Pages: 230

Formal Verification of Control System Software

An essential introduction to the analysis and verification of control system software The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. In this authoritative and accessible book, Pierre-Loïc Garoche provides control engineers and computer scientists with an indispensable introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the...

Motion planning and feedback control techniques with applications to long tractor-trailer vehicles
  • Language: en
  • Pages: 119

Motion planning and feedback control techniques with applications to long tractor-trailer vehicles

During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. At the same time, there has been a growing demand within the transportation sector to increase efficiency and to reduce the environmental impact related to transportation of people and goods. Therefore, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed environments, such as mines, harbors, loading and offloading sites. In such areas, t...

On motion planning and control for truck and trailer systems
  • Language: en
  • Pages: 98

On motion planning and control for truck and trailer systems

During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. Thanks to this technology enhancement, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems (ADAS) and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed areas, such as mines, harbors and loading/offloading sites. In such areas, the legal requirements are less restrictive and the surrounding environment is more controlled and predictable compared to urban areas. Expected positive outcomes inc...

Robotics
  • Language: en
  • Pages: 382

Robotics

  • Type: Book
  • -
  • Published: 2012-06-29
  • -
  • Publisher: MIT Press

Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VII spans a wide spectrum of robotics, bringing together researchers working on the algorithmic or mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the seventh annual Robotics: Science and Systems conference, held in 2011 at the University of Southern California. The papers presented cover a wide range of topics in robotics, spanning mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.

Minimax Approaches to Robust Model Predictive Control
  • Language: en
  • Pages: 212

Minimax Approaches to Robust Model Predictive Control

Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for unce...

Control, Models and Industrial Manipulators
  • Language: en
  • Pages: 83

Control, Models and Industrial Manipulators

The two topics at the heart of this thesis are how to improve control of industrial manipulators and how to reason about the role of models in automatic control. On industrial manipulators, two case studies are presented. The first investigates estimation with inertial sensors, and the second compares control by feedback linearization to control based on gain-scheduling. The contributions on the second topic illustrate the close connection between control and estimation in different ways. A conceptual model of control is introduced, which can be used to emphasize the role of models as well as the human aspect of control engineering. Some observations are made regarding block-diagram reformulations that illustrate the relation between models, control and inversion. Finally, a suggestion for how the internal model principle, internal model control, disturbance observers and Youla-Kucera parametrization can be introduced in a unified way is presented.

On Informative Path Planning for Tracking and Surveillance
  • Language: en
  • Pages: 106

On Informative Path Planning for Tracking and Surveillance

This thesis studies a class of sensor management problems called informative path planning (IPP). Sensor management refers to the problem of optimizing control inputs for sensor systems in dynamic environments in order to achieve operational objectives. The problems are commonly formulated as stochastic optimal control problems, where to objective is to maximize the information gained from future measurements. In IPP, the control inputs affect the movement of the sensor platforms, and the goal is to compute trajectories from where the sensors can obtain measurements that maximize the estimation performance. The core challenge lies in making decisions based on the predicted utility of future ...

Sparse Polynomial Optimization: Theory And Practice
  • Language: en
  • Pages: 223

Sparse Polynomial Optimization: Theory And Practice

Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass sev...

Investigation on Robust Codesign Methods for Networked Control Systems
  • Language: en
  • Pages: 184

Investigation on Robust Codesign Methods for Networked Control Systems

The problem of jointly designing a robust controller and an intelligent scheduler for networked control systems (NCSs) is addressed in this thesis. NCSs composing of multiple plants that share a single channel communication network with uncertain time-varying transmission times are modeled as switched polytopic systems with additive norm-bounded uncertainty. Switching is deployed to represent scheduling, the polytopic uncertainty to overapproximatively describe the uncertain time-varying transmission times. Based on the resulting NCS model and a state feedback control law, the control and scheduling codesign problem is then introduced and formulated as a robust (minimax) optimization problem...