You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book contains refereed papers presented at the AMS-IMS-SIAM Summer Research Conference on the Penrose Transform and Analytic Cohomology in Representation Theory held in the summer of 1992 at Mount Holyoke College. The conference brought together some of the top experts in representation theory and differential geometry. One of the issues explored at the conference was the fact that various integral transforms from representation theory, complex integral geometry, and mathematical physics appear to be instances of the same general construction, which is sometimes called the ``Penrose transform''. There is considerable scope for further research in this area, and this book would serve as an excellent introduction.
This book presents papers given at a Conference on Inverse Scattering on the Line, held in June 1990 at the University of Massachusetts, Amherst. A wide variety of topics in inverse problems were covered: inverse scattering problems on the line; inverse problems in higher dimensions; inverse conductivity problems; and numerical methods. In addition, problems from statistical physics were covered, including monodromy problems, quantum inverse scattering, and the Bethe ansatz. One of the aims of the conference was to bring together researchers in a variety of areas of inverse problems which have seen intensive activity in recent years. scattering
The papers collected here present an up-to-date record of the current research developments in the fields of real algebraic geometry and quadratic forms. Articles range from the technical to the expository and there are also indications to new research directions.
1989 marked the 150th anniversary of the birth of the great Danish mathematician Hieronymus George Zeuthen. Zeuthen's name is known to every algebraic geometer because of his discovery of a basic invariant of surfaces. However, he also did fundamental research in intersection theory, enumerative geometry, and the projective geometry of curves and surfaces. Zeuthen's extraordinary devotion to his subject, his characteristic depth, thoroughness, and clarity of thought, and his precise and succinct writing style are truly inspiring. During the past ten years or so, algebraic geometers have reexamined Zeuthen's work, drawing from it inspiration and new directions for development in the field. The 1989 Zeuthen Symposium, held in the summer of 1989 at the Mathematical Institute of the University of Copenhagen, provided a historic opportunity for mathematicians to gather and examine those areas in contemporary mathematical research which have evolved from Zeuthen's fruitful ideas. This volume, containing papers presented during the symposium, as well as others inspired by it, illuminates some currently active areas of research in enumerative algebraic geometry.
This volume contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Nielsen Theory and Dynamical Systems, held in June 1992 at Mount Holyoke College. Focusing on the interface between Nielsen fixed point theory and dynamical systems, this book provides an almost complete survey of the state of the art of Nielsen theory. Most of the articles are expository and provide references to more technical works, making them accessible to both graduate students and researchers in algebraic topology, fixed point theory, and dynamical systems.
* Brings together a wide variety of themes under a single unifying perspective The proceedings of a conference on Linear algebraic Groups and their Representations - the text gets to grips with the fundamental nature of this subject and its interaction with a wide variety of active areas in mathematics and physics.
This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas for noninvertible maps, Floquet theory for delay differential equations, a priori estimates controlli...
This is the proceedings of a Joint Summer Research Conference held at Mount Holyoke College in Jun 1994. As perhaps the first conference proceedings devoted exclusively to the subject known as "Moonshine", this work contains something for many mathematicians and physicists. Many of the results featured are not available elsewhere.