You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Smart drug delivery refers to a targeted drug delivery or precision drug delivery system that allows drugs to be administered to a specific location in the body or at a specific time with enhanced precision and control. This approach has several advantages, including maximizing the therapeutic effects of a drug while minimizing side effects. This book presents various stimuli-responsive micro- and nanomaterials for pharmaceutical industries. This volume: Covers the global market perspective of micro- and nano-smart materials in pharmaceutical industries. Details various processing routes. Discusses mechanisms for target release. Addresses applications in oral drug delivery, anticancer agents, anti-tumor drug delivery, and drugs for management of infection. This reference work is written to support researchers in the fields of materials engineering and biotechnology with the goal of improving the diagnosis and treatment of disease and patient quality of life.
This edited volume presents a comprehensive discussion of emerging sustainable and renewable composites from tropical fibres and provides an in-depth analysis of their prospective applications as replacements for conventional petroleum-based packaging and the challenges regarding this. Readers will gain a comprehensive understanding of the development and characterization of sustainable and renewable composites from fibres such as sugar palm, kenaf, sisal, curau, and coir. They will also learn about new potential materials from such fibres and their potential use in various nanoelectronics applications. Each chapter provides recent insight from some of the field’s most prominent industry a...
Environmental risk factors – noise, air pollution, chemical agents, and ultraviolet radiation – impact human health by contributing to the onset and progression of noncommunicable diseases. Accordingly, there is need for preclinical and clinical studies and comprehensive summary of major findings. This book is a state-of-the-art summary of these myriad severe life stressors. The chapters on the different pollutants focus on disease mechanisms (cardiovascular, neurological and metabolic disorders) and on oxidative stress and inflammation. The editors emphasize emerging mechanisms based on dysregulation of the circadian clock, the microbiome, epigenetic pathways, and cognitive function by environmental stressors, and introduce the exposome concept while highlighting existing research gaps. Key Features: Links various environmental stressors to the incidence of noncommunicable diseases Includes chapters on airborne toxins, chemical pollutants, noise, and ultraviolet radiation stressors Contributions from an international team of leading researchers Summarizes the impacts of stressors on disease mechanisms
Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.
This book highlights the innovations and techniques to identify and treat emerging pollutants in waste and polluted water. It begins with the classification of emerging pollutants and is followed by a review on existing detection and elimination techniques as well as the current regulations in place. Subsequent chapters cover membrane-based separation processes, polymer-based or resin-based water filters, functional materials, nanomaterials-based adsorbents, microplastics and a summary of the potential solutions in treating or removing emerging pollutants. Features Presents an overview of current and developing treatment technologies for water polluted with emerging pollutants Gives an in-depth account and analysis of advanced materials and methods for separation and treatment Reviews analytical techniques applied to detect emerging pollutants Discusses the overall effect of policies on current chemicals/plastics/APIs in the market Includes pertinent case studies and regulations This book is aimed at researchers, professionals and graduate students in environmental, civil and chemical engineering and waste and drinking water treatment.
This book focuses on the detection, extraction, remediation techniques, and future perspectives of microplastics. It includes characteristics, fluctuations, distribution, and water remediation of microplastics using various functionalized nanomaterials. This book also covers the impact of microplastics discharged from domestic and various industrial fields such as pharmaceutical, clothing, polymer industries, etc., for the quantification of poisonous substances in water. Different techniques in water remediation and environment as well as in the determination of hazard, toxicity, and monitoring standards towards microplastics are also covered. Features: Discusses the presence of microplastic...