You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the printed edition of the Special Issue published in Materials. The book provides an overview of current international research activities in the field of friction and wear management through the laser processing of periodic surface micro- and nanostructures for technical and medical applications. Contributions of renowned scientists from academia and industry provide a bridge between the fields of tribology and laser material processing in order to foster current knowledge and present new ideas for future applications and new technologies.
Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
In der Buchreihe des "Bonn Center for Dependency and Slavery Studies" werden Monographien und Tagungsbände, die das Phänomen der Sklaverei und andere Formen asymmetrischer Abhängigkeiten in Gesellschaften untersuchen, veröffentlicht. Die Reihe folgt dabei der Forschungsagenda des BCDSS, die die vorherrschende dichotomische Vorstellung von "Sklaverei versus Freiheit" überwindet. Das Cluster hat dazu ein neues Schlüsselkonzept ("asymmetrische Abhängigkeiten") entwickelt, das alle Ausprägungen von ungleichen Dependenzen (wie etwa Schuldknechtschaft, Zwangsarbeit, Dienstbarkeit, Leibeigenschaft, Hausarbeit, aber auch gewisse Formen der Lohnarbeit und der Patronage) berücksichtigt. Dabei werden auch Epochen, Räume und Kontexte der Weltgeschichte bearbeitet, die nicht der europäischen Kolonisierung ausgesetzt waren (z.B. altorientalische Kulturen sowie vormoderne und moderne Gesellschaften in Asien, Afrika und den Amerikas).
Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.
Materials Development and Processing for Biomedical Applications focuses on various methods of manufacturing, surface modifications, and advancements in biomedical applications. This book examines in detail about five different aspects including, materials properties, development, processing, surface coatings, future perspectives and fabrication of advanced biomedical devices. Fundamental aspects are discussed to better understand the processing of various biomedical materials such as metals, ceramics, polymers, composites, etc. A wide range of surface treatments are covered in this book that will be helpful for the readers to understand the importance of surface treatments and their future ...
None
None