You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In July 1996, a conference was organized by the editors of this volume at the Mathematische Forschungsinstitut Oberwolfach to honour Egbert Brieskorn on the occasion of his 60th birthday. Most of the mathematicians invited to the conference have been influenced in one way or another by Brieskorn's work in singularity theory. It was the first time that so many people from the Russian school could be present at a conference in singularity theory outside Russia. This volume contains papers on singularity theory and its applications, written by participants of the conference. In many cases, they are extended versions of the talks presented there. The diversity of subjects of the contributions re...
This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background...
Spencer J. Bloch has, and continues to have, a profound influence on the subject of Algebraic $K$-Theory, Cycles and Motives. This book, which is comprised of a number of independent research articles written by leading experts in the field, is dedicated in his honour, and gives a snapshot of the current and evolving nature of the subject. Some of the articles are written in an expository style, providing a perspective on the current state of the subject to those wishing to learn more about it. Others are more technical, representing new developments and making them especially interesting to researchers for keeping abreast of recent progress.
The multiplier ideals of an ideal in a regular local ring form a family of ideals parameterized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript the author gives an explicit formula for the jumping numbers of a simple complete ideal in a two-dimensional regular local ring. In particular, he obtains a formula for the jumping numbers of an analytically irreducible plane curve. He then shows that the jumping numbers determine the equisingularity class of the curve.
Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018. The papers cover recent developments on the theory of algebraic varieties—in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.
View the abstract.
This volume contains the proceedings of the conference String-Math 2015, which was held from December 31, 2015–January 4, 2016, at Tsinghua Sanya International Mathematics Forum in Sanya, China. Two of the main themes of this volume are frontier research on Calabi-Yau manifolds and mirror symmetry and the development of non-perturbative methods in supersymmetric gauge theories. The articles present state-of-the-art developments in these topics. String theory is a broad subject, which has profound connections with broad branches of modern mathematics. In the last decades, the prosperous interaction built upon the joint efforts from both mathematicians and physicists has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side, as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side.
A collection of articles giving overviews and open questions in singularities and their computational aspects.