You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fundamentals of Data Science: Theory and Practice presents basic and advanced concepts in data science along with real-life applications. The book provides students, researchers and professionals at different levels a good understanding of the concepts of data science, machine learning, data mining and analytics. Users will find the authors' research experiences and achievements in data science applications, along with in-depth discussions on topics that are essential for data science projects, including pre-processing, that is carried out before applying predictive and descriptive data analysis tasks and proximity measures for numeric, categorical and mixed-type data. The book's authors inc...
The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.
This book constitutes the refereed proceedings of the 6th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2004, held in Zaragoza, Spain, in September 2004. The 40 revised full papers presented were carefully reviewed and selected from over 100 submissions. The papers are organized in topical sections on data warehouse design; knowledge discovery framework and XML data mining, data cubes and queries; multidimensional schema and data aggregation; inductive databases and temporal rules; industrial applications; data clustering; data visualization and exploration; data classification, extraction, and interpretation; data semantics, association rule mining; event sequence mining; and pattern mining.
The tenth Portuguese Conference on Arti?cial Intelligence, EPIA 2001 was held in Porto and continued the tradition of previous conferences in the series. It returned to the city in which the ?rst conference took place, about 15 years ago. The conference was organized, as usual, under the auspices of the Portuguese Association for Arti?cial Intelligence (APPIA, http://www.appia.pt). EPIA maintained its international character and continued to provide a forum for p- senting and discussing researc h on di?erent aspects of Arti?cial Intelligence. To promote motivated discussions among participants, this conference streng- ened the role of the thematic workshops. These were not just satellite events, but rather formed an integral part of the conference, with joint sessions when justi?ed. This had the advantage that the work was presented to a motivated audience. This was the ?rst time that EPIA embarked on this experience and so provided us with additional challenges.
2.1 Text Summarization “Text summarization is the process of distilling the most important information from a source (or sources) to produce an abridged version for a particular user (or users) and task (or tasks)” [3]. Basic and classical articles in text summarization appear in “Advances in automatic text summarization” [3]. A literature survey on information extraction and text summarization is given by Zechner [7]. In general, the process of automatic text summarization is divided into three stages: (1) analysis of the given text, (2) summarization of the text, (3) presentation of the summary in a suitable output form. Titles, abstracts and keywords are the most common summaries ...
This volume constitutes the proceedings of the 9th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2014, held in Salamanca, Spain, in June 2014. The 61 papers published in this volume were carefully reviewed and selected from 199 submissions. They are organized in topical sessions on HAIS applications; data mining and knowledge discovery; video and image analysis; bio-inspired models and evolutionary computation; learning algorithms; hybrid intelligent systems for data mining and applications and classification and cluster analysis.
This book constitutes the refereed proceedings of the 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Export Systems, IEA/AIE 2001, held in Budapest, Hungary in June 2001. The 104 papers presented were carefully reviewed and selected from a total of 140 submissions. The proceedings offer topical sections on searching, knowledge representation, model-based reasoning, machine learning, data mining, soft computing, evolutionary algorithms, distributed problem solving, export systems, pattern and speech recognition, vision language processing, planning and scheduling, robotics, autonomous agents, design, control, manufacturing systems, finance and business, software engineering, and intelligent tutoring.
th The 5 International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010) has become a unique, established and broad interdisciplinary forum for researchers and practitioners who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Overcoming the rigid encasing imposed by the arising orthodoxy in the field of arti- cial intelligence, which has led to the partition of researchers into so-called areas or fields, interest in hybrid intelligent systems is growing because they give freedom to design innovative solution...
This book constitutes the refereed proceedings of the 6th International Conference on Intelligent Data Analysis, IDA 2005, held in Madrid, Spain in September 2005. The 46 revised papers presented together with two tutorials and two invited talks were carefully reviewed and selected from 184 submissions. All current aspects of this interdisciplinary field are addressed; the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.